
CS162
Operating Systems and
Systems Programming

Lecture 9

Monitors (Continued)
Scheduling

Core Concepts and Classic Policies

Professor Natacha Crooks & Matei Zaharia

https://cs162.org/

Slides based on prior slide decks from David Culler, Ion Stoica, John Kubiatowicz, Alison Norman and Lorenzo Alvisi

9.2Crooks & Zaharia CS162 © UCB Spring 2025

Hardware

Higher-level
API

Programs

Where are we going with synchronization?

Implement various higher-level synchronization primitives using atomic
operations

Load/Store Disable Interrupts Test&Set Compare&Swap

Locks Semaphores Monitors Send/Receive

Shared Programs

9.3Crooks & Zaharia CS162 © UCB Spring 2025

Recall: Monitors

Use locks for mutual exclusion and condition variables for scheduling constraints

Monitor: a lock and zero or more condition variables for managing concurrent
access to shared data

A monitor is a paradigm for concurrent programming

- Some languages like Java provide this natively

- Most others use actual locks and condition variables

9.4Crooks & Zaharia CS162 © UCB Spring 2025

Recall: Wait & Signal Pattern

acquire(&buf_lock);

…

while (isEmpty(&queue)) {

 cond_wait(&buf_CV,&buf_lock);

}

…

lock.Release();

…

acquire(&buf_lock)

…

cond_signal(&buf_CV);

…

release(&buf_lock));

9.5Crooks & Zaharia CS162 © UCB Spring 2025

Recall: Hoare Semantics

acquire(&buf_lock);

…

if (isEmpty(&queue)) {

 cond_wait(&buf_CV,&buf_lock);

}

…

lock.Release();

…

acquire(&buf_lock)

…

cond_signal(&buf_CV);

…

release(&buf_lock));

Thread A Thread B

1. When call signal, handover buf_lock to thread B.

2. Thread B gets immediately scheduled (nothing can run in between).

3. Thread B eventually releases lock.

9.6Crooks & Zaharia CS162 © UCB Spring 2025

Recall: Mesa Semantics

acquire(&buf_lock);

…

while (isEmpty(&queue)) {

 cond_wait(&buf_CV,&buf_lock);

}

…

lock.Release();

…

acquire(&buf_lock)

…

cond_signal(&buf_CV);

…

release(&buf_lock));

Thread A Thread B

1. When call signal, keep lock. Place Thread B on READY queue (no special priority)
2. Thread A eventually releases buf_lock.
3. Thread B eventually gets scheduled and acquires buf_lock. Thread C may have run in

between.
4. Thread B eventually releases buf_lock.

9.7Crooks & Zaharia CS162 © UCB Spring 2025

Basic Structure of Mesa Monitor Program
Monitors represent the synchronization logic of the program

– Wait if necessary

– Signal when change something so any waiting threads can proceed

 lock
while (need to wait) {
 condvar.wait();
}
unlock

do something so no need to wait
lock

 condvar.signal();

unlock

Check and/or update

state variables

Wait if necessary

Check and/or update

state variables

9.8Crooks & Zaharia CS162 © UCB Spring 2025

Readers/Writers Problem

Motivation: consider a shared database

– Two classes of users:

» Readers – never modify database

» Writers – read and modify database

– Is using a single lock on the whole database sufficient?

» Like to have many readers at the same time

» Only one writer at a time

R
R

R

W

9.9Crooks & Zaharia CS162 © UCB Spring 2025

Basic Readers/Writers Solution

Correctness Constraints:
– Readers can access database when no writers
– Writers can access database when no readers or writers
– Only one thread manipulates state variables at a time

Basic structure of a solution:
–Reader()
 Wait until no writers
 Access database
 Check out – wake up a waiting writer

–Writer()
 Wait until no active readers or writers
 Access database
 Check out – wake up waiting readers or writer

9.10Crooks & Zaharia CS162 © UCB Spring 2025

Basic Readers/Writers Solution

State variables (Protected by a lock called “lock”):
» int AR: Number of active readers; initially = 0
» int WR: Number of waiting readers; initially = 0
» int AW: Number of active writers; initially = 0
» int WW: Number of waiting writers; initially = 0
» Condition okToRead
» Condition okToWrite

9.11Crooks & Zaharia CS162 © UCB Spring 2025

Code for a Reader
Reader() {

 // First check self into system

 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?

 WR++; // No. Writers exist

 cond_wait(&okToRead,&lock); // Sleep on cond var

 WR--; // No longer waiting
 }

 AR++; // Now we are active!

 release(&lock);

 // Perform actual read-only access

 AccessDatabase(ReadOnly);

 // Now, check out of system

 acquire(&lock);

 AR--; // No longer active

 if (AR == 0 && WW > 0) // No other active readers
 cond_signal(&okToWrite);// Wake up one writer

 release(&lock);

}

9.12Crooks & Zaharia CS162 © UCB Spring 2025

Writer() {
 // First check self into system
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock); // Sleep on cond var
 WW--; // No longer waiting
 }

 AW++; // Now we are active!
 release(&lock);

 // Perform actual read/write access
 AccessDatabase(ReadWrite);

 // Now, check out of system
 acquire(&lock);
 AW--; // No longer active
 if (WW > 0){ // Give priority to writers
 cond_signal(&okToWrite);// Wake up one writer
 } else if (WR > 0) { // Otherwise, wake reader
 cond_broadcast(&okToRead); // Wake all readers
 }
 release(&lock);
}

Code for a Writer

9.13Crooks & Zaharia CS162 © UCB Spring 2025

Simulation of Readers/Writers Solution

Use an example to simulate the solution

Consider the following sequence of operators:

– R1, R2, W1, R3

Initially: AR = 0, WR = 0, AW = 0, WW = 0

9.14Crooks & Zaharia CS162 © UCB Spring 2025

Simulation of Readers/Writers Solution

R1 comes along (no waiting threads)

AR = 0, WR = 0, AW = 0, WW = 0

Reader() {
 acquire(&lock)

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.15Crooks & Zaharia CS162 © UCB Spring 2025

Simulation of Readers/Writers Solution

R1 comes along (no waiting threads)

AR = 0, WR = 0, AW = 0, WW = 0

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.16Crooks & Zaharia CS162 © UCB Spring 2025

Simulation of Readers/Writers Solution

R1 comes along (no waiting threads)

AR = 1, WR = 0, AW = 0, WW = 0

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.17Crooks & Zaharia CS162 © UCB Spring 2025

Simulation of Readers/Writers Solution

R1 comes along (no waiting threads)

AR = 1, WR = 0, AW = 0, WW = 0

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.18Crooks & Zaharia CS162 © UCB Spring 2025

Simulation of Readers/Writers Solution

R1 accessing dbase (no other threads)

AR = 1, WR = 0, AW = 0, WW = 0

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.19Crooks & Zaharia CS162 © UCB Spring 2025

Simulation of Readers/Writers Solution

R2 comes along (R1 accessing dbase)

AR = 1, WR = 0, AW = 0, WW = 0

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.20Crooks & Zaharia CS162 © UCB Spring 2025

Simulation of Readers/Writers Solution

R2 comes along (R1 accessing dbase)

AR = 1, WR = 0, AW = 0, WW = 0

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.21Crooks & Zaharia CS162 © UCB Spring 2025

Simulation of Readers/Writers Solution

R2 comes along (R1 accessing dbase)

AR = 2, WR = 0, AW = 0, WW = 0

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.22Crooks & Zaharia CS162 © UCB Spring 2025

Simulation of Readers/Writers Solution

R2 comes along (R1 accessing dbase)

AR = 2, WR = 0, AW = 0, WW = 0

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.23Crooks & Zaharia CS162 © UCB Spring 2025

Simulation of Readers/Writers Solution

R1 and R2 accessing dbase

AR = 2, WR = 0, AW = 0, WW = 0

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

Assume readers take a while to access database

Situation: Locks released, only AR is non-zero

9.24Crooks & Zaharia CS162 © UCB Spring 2025

Simulation of Readers/Writers Solution

W1 comes along (R1 and R2 are still accessing dbase)

AR = 2, WR = 0, AW = 0, WW = 0

Writer() {
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 release(&lock);

 AccessDBase(ReadWrite);

 acquire(&lock);
 AW--;
 if (WW > 0){
 cond_signal(&okToWrite);
 } else if (WR > 0) {
 cond_broadcast(&okToRead);
 }
 release(&lock);
}

9.25Crooks & Zaharia CS162 © UCB Spring 2025

Writer() {
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 release(&lock);

 AccessDBase(ReadWrite);

 acquire(&lock);
 AW--;
 if (WW > 0){
 cond_signal(&okToWrite);
 } else if (WR > 0) {
 cond_broadcast(&okToRead);
 }
 release(&lock);
}

Simulation of Readers/Writers Solution

W1 comes along (R1 and R2 are still accessing dbase)

AR = 2, WR = 0, AW = 0, WW = 0

9.26Crooks & Zaharia CS162 © UCB Spring 2025

Writer() {
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 release(&lock);

 AccessDBase(ReadWrite);

 acquire(&lock);
 AW--;
 if (WW > 0){
 cond_signal(&okToWrite);
 } else if (WR > 0) {
 cond_broadcast(&okToRead);
 }
 release(&lock);
}

Simulation of Readers/Writers Solution

• W1 comes along (R1 and R2 are still accessing dbase)

• AR = 2, WR = 0, AW = 0, WW = 1

9.27Crooks & Zaharia CS162 © UCB Spring 2025

Simulation of Readers/Writers Solution

R3 comes along (R1 and R2 accessing dbase, W1 waiting)

AR = 2, WR = 0, AW = 0, WW = 1

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.28Crooks & Zaharia CS162 © UCB Spring 2025

Simulation of Readers/Writers Solution

R3 comes along (R1 and R2 accessing dbase, W1 waiting)

AR = 2, WR = 0, AW = 0, WW = 1

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.29Crooks & Zaharia CS162 © UCB Spring 2025

Simulation of Readers/Writers Solution

R3 comes along (R1 and R2 accessing dbase, W1 waiting)

AR = 2, WR = 1, AW = 0, WW = 1

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.30Crooks & Zaharia CS162 © UCB Spring 2025

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

Simulation of Readers/Writers Solution

R3 comes along (R1, R2 accessing dbase, W1 waiting)

AR = 2, WR = 1, AW = 0, WW = 1

9.31Crooks & Zaharia CS162 © UCB Spring 2025

Simulation of Readers/Writers Solution

R1 and R2 accessing dbase, W1 and R3 waiting

AR = 2, WR = 1, AW = 0, WW = 1

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}
Status:

• R1 and R2 still reading

• W1 and R3 waiting on okToWrite and okToRead, respectively

9.32Crooks & Zaharia CS162 © UCB Spring 2025

Simulation of Readers/Writers Solution

R2 finishes (R1 accessing dbase, W1 and R3 waiting)

AR = 2, WR = 1, AW = 0, WW = 1

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.33Crooks & Zaharia CS162 © UCB Spring 2025

Simulation of Readers/Writers Solution

R2 finishes (R1 accessing dbase, W1 and R3 waiting)

AR = 1, WR = 1, AW = 0, WW = 1

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.34Crooks & Zaharia CS162 © UCB Spring 2025

Simulation of Readers/Writers Solution

R2 finishes (R1 accessing dbase, W1 and R3 waiting)

AR = 1, WR = 1, AW = 0, WW = 1

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.35Crooks & Zaharia CS162 © UCB Spring 2025

Simulation of Readers/Writers Solution

R2 finishes (R1 accessing dbase, W1 and R3 waiting)

AR = 1, WR = 1, AW = 0, WW = 1

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.36Crooks & Zaharia CS162 © UCB Spring 2025

Simulation of Readers/Writers Solution

R1 finishes (W1 and R3 waiting)

AR = 1, WR = 1, AW = 0, WW = 1

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.37Crooks & Zaharia CS162 © UCB Spring 2025

Simulation of Readers/Writers Solution

R1 finishes (W1, R3 waiting)

AR = 0, WR = 1, AW = 0, WW = 1

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.38Crooks & Zaharia CS162 © UCB Spring 2025

Simulation of Readers/Writers Solution

R1 finishes (W1, R3 waiting)

AR = 0, WR = 1, AW = 0, WW = 1

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.39Crooks & Zaharia CS162 © UCB Spring 2025

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

Simulation of Readers/Writers Solution

R1 signals a writer (W1 and R3 waiting)

AR = 0, WR = 1, AW = 0, WW = 1

9.40Crooks & Zaharia CS162 © UCB Spring 2025

Writer() {
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 release(&lock);

 AccessDBase(ReadWrite);

 acquire(&lock);
 AW--;
 if (WW > 0){
 cond_signal(&okToWrite);
 } else if (WR > 0) {
 cond_broadcast(&okToRead);
 }
 release(&lock);
}

Simulation of Readers/Writers Solution

W1 gets signal (R3 still waiting)

AR = 0, WR = 1, AW = 0, WW = 1

9.41Crooks & Zaharia CS162 © UCB Spring 2025

Writer() {
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 release(&lock);

 AccessDBase(ReadWrite);

 acquire(&lock);
 AW--;
 if (WW > 0){
 cond_signal(&okToWrite);
 } else if (WR > 0) {
 cond_broadcast(&okToRead);
 }
 release(&lock);
}

Simulation of Readers/Writers Solution

W1 gets signal (R3 still waiting)

AR = 0, WR = 1, AW = 0, WW = 0

9.42Crooks & Zaharia CS162 © UCB Spring 2025

Writer() {
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 release(&lock);

 AccessDBase(ReadWrite);

 acquire(&lock);
 AW--;
 if (WW > 0){
 cond_signal(&okToWrite);
 } else if (WR > 0) {
 cond_broadcast(&okToRead);
 }
 release(&lock);
}

Simulation of Readers/Writers Solution

W1 gets signal (R3 still waiting)

AR = 0, WR = 1, AW = 1, WW = 0

9.43Crooks & Zaharia CS162 © UCB Spring 2025

Writer() {
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 release(&lock);

 AccessDBase(ReadWrite);

 acquire(&lock);
 AW--;
 if (WW > 0){
 cond_signal(&okToWrite);
 } else if (WR > 0) {
 cond_broadcast(&okToRead);
 }
 release(&lock);
}

Simulation of Readers/Writers Solution

W1 accessing dbase (R3 still waiting)

AR = 0, WR = 1, AW = 1, WW = 0

9.44Crooks & Zaharia CS162 © UCB Spring 2025

Writer() {
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 release(&lock);

 AccessDBase(ReadWrite);

 acquire(&lock);
 AW--;
 if (WW > 0){
 cond_signal(&okToWrite);
 } else if (WR > 0) {
 cond_broadcast(&okToRead);
 }
 release(&lock);
}

Simulation of Readers/Writers Solution

W1 finishes (R3 still waiting)

AR = 0, WR = 1, AW = 1, WW = 0

9.45Crooks & Zaharia CS162 © UCB Spring 2025

Writer() {
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 release(&lock);

 AccessDBase(ReadWrite);

 acquire(&lock);
 AW--;
 if (WW > 0){
 cond_signal(&okToWrite);
 } else if (WR > 0) {
 cond_broadcast(&okToRead);
 }
 release(&lock);
}

Simulation of Readers/Writers Solution

W1 finishes (R3 still waiting)

AR = 0, WR = 1, AW = 0, WW = 0

9.46Crooks & Zaharia CS162 © UCB Spring 2025

Writer() {
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 release(&lock);

 AccessDBase(ReadWrite);

 acquire(&lock);
 AW--;
 if (WW > 0){
 cond_signal(&okToWrite);
 } else if (WR > 0) {
 cond_broadcast(&okToRead);
 }
 release(&lock);
}

Simulation of Readers/Writers Solution

W1 finishes (R3 still waiting)

AR = 0, WR = 1, AW = 0, WW = 0

9.47Crooks & Zaharia CS162 © UCB Spring 2025

Writer() {
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 release(&lock);

 AccessDBase(ReadWrite);

 acquire(&lock);
 AW--;
 if (WW > 0){
 cond_signal(&okToWrite);
 } else if (WR > 0) {
 cond_broadcast(&okToRead);
 }
 release(&lock);
}

Simulation of Readers/Writers Solution

W1 signaling readers (R3 still waiting)

AR = 0, WR = 1, AW = 0, WW = 0

9.48Crooks & Zaharia CS162 © UCB Spring 2025

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

Simulation of Readers/Writers Solution

R3 gets signal (no waiting threads)

AR = 0, WR = 1, AW = 0, WW = 0

9.49Crooks & Zaharia CS162 © UCB Spring 2025

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

Simulation of Readers/Writers Solution

R3 gets signal (no waiting threads)

AR = 0, WR = 0, AW = 0, WW = 0

9.50Crooks & Zaharia CS162 © UCB Spring 2025

Simulation of Readers/Writers Solution

R3 accessing dbase (no waiting threads)

AR = 1, WR = 0, AW = 0, WW = 0

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.51Crooks & Zaharia CS162 © UCB Spring 2025

Simulation of Readers/Writers Solution

R3 finishes (no waiting threads)

AR = 1, WR = 0, AW = 0, WW = 0

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.52Crooks & Zaharia CS162 © UCB Spring 2025

Simulation of Readers/Writers Solution

R3 finishes (no waiting threads)

AR = 0, WR = 0, AW = 0, WW = 0

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDbase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.53Crooks & Zaharia CS162 © UCB Spring 2025

Questions

Can readers starve? Consider Reader() entry code:
 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!

What if we erase the condition check in Reader exit?

 AR--; // No longer active
 if (AR == 0 && WW > 0) // No other active readers
 cond_signal(&okToWrite);// Wake up one writer

9.54Crooks & Zaharia CS162 © UCB Spring 2025

Questions

Further, what if we turn the signal() into broadcast()
 AR--; // No longer active
 cond_broadcast(&okToWrite); // Wake up sleepers

Finally, what if we use only one condition variable (call it
“okContinue”) instead of two separate ones?

– Both readers and writers sleep on this variable

– Must use broadcast() instead of signal()

9.55Crooks & Zaharia CS162 © UCB Spring 2025

Code for a Reader
Reader() {

 // First check self into system

 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?

 WR++; // No. Writers exist

 cond_wait(&okToRead,&lock);// Sleep on cond var

 WR--; // No longer waiting
 }

 AR++; // Now we are active!

 release(&lock);

 // Perform actual read-only access

 AccessDatabase(ReadOnly);

 // Now, check out of system

 acquire(&lock);

 AR--; // No longer active

 if (AR == 0 && WW > 0) // No other active readers
 cond_signal(&okToWrite);// Wake up one writer

 release(&lock);

}

9.56Crooks & Zaharia CS162 © UCB Spring 2025

Writer() {
 // First check self into system
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock); // Sleep on cond var
 WW--; // No longer waiting
 }

 AW++; // Now we are active!
 release(&lock);

 // Perform actual read/write access
 AccessDatabase(ReadWrite);

 // Now, check out of system
 acquire(&lock);
 AW--; // No longer active
 if (WW > 0){ // Give priority to writers
 cond_signal(&okToWrite);// Wake up one writer
 } else if (WR > 0) { // Otherwise, wake reader
 cond_broadcast(&okToRead); // Wake all readers
 }
 release(&lock);
}

Code for a Writer

9.57Crooks & Zaharia CS162 © UCB Spring 2025

Mesa Monitor Conclusion
Monitors represent the synchronization logic of the program

– Wait if necessary

– Signal when change something so any waiting threads can proceed

 lock
while (need to wait) {
 condvar.wait();
}
unlock

do something so no need to wait
lock

 condvar.signal();

unlock

Check and/or update

state variables

Wait if necessary

Check and/or update

state variables

9.58Crooks & Zaharia CS162 © UCB Spring 2025

C Language Support for Synchronization

C language: Pretty straightforward synchronization

Just make sure you know all the code paths out of a critical section

 int Rtn() {
 acquire(&lock);
 …
 if (exception) {
 release(&lock);
 return errReturnCode;
 }
 …
 release(&lock);
 return OK;
}

9.59Crooks & Zaharia CS162 © UCB Spring 2025

Harder with more locks

void Rtn() {
 lock1.acquire();
 …
 if (error) {
 lock1.release();
 return;
 }
 …
 lock2.acquire();
 …
 if (error) {
 lock2.release()
 lock1.release();
 return;
 }
 …
 lock2.release();
 lock1.release();
}

Concurrency and Synchronization in C

9.60Crooks & Zaharia CS162 © UCB Spring 2025

C++ Language Support for Synchronization

Languages with exceptions like C++

– Languages that support exceptions are problematic (easy to make a non-
local exit without releasing lock)

 void Rtn() {
 lock.acquire();
 …
 DoFoo();
 …
 lock.release();
 }
 void DoFoo() {
 …
 if (exception) throw errException;
 …
 }

– Notice that an exception in DoFoo() will exit without releasing the lock!

9.61Crooks & Zaharia CS162 © UCB Spring 2025

C++ Language Support for Synchronization (con’t)

Must catch all exceptions in critical sections
– Catch exceptions, release lock, and re-throw exception:

 void Rtn() {
 lock.acquire();
 try {
 …
 DoFoo();
 …
 } catch (…) { // catch exception
 lock.release(); // release lock
 throw; // re-throw the exception
 }
 lock.release();
 }
 void DoFoo() {
 …
 if (exception) throw errException;
 …
 }

9.62Crooks & Zaharia CS162 © UCB Spring 2025

Much better: C++ Lock Guards

#include <mutex>

int global_i = 0;

std::mutex global_mutex;

void safe_increment() {

 std::lock_guard<std::mutex> lock(global_mutex);

 …

 global_i++;

 // Mutex released when ‘lock’ goes out of scope

}

9.63Crooks & Zaharia CS162 © UCB Spring 2025

Python with Keyword

More versatile than we show here (can be used to close files, database
connections, etc.)

lock = threading.Lock()

…

with lock: # Automatically calls acquire()

 some_var += 1

 …

release() called however we leave block

9.64Crooks & Zaharia CS162 © UCB Spring 2025

Java synchronized Keyword

Every Java object has an associated lock:
– Lock is acquired on entry and released on exit from a synchronized method
– Lock is properly released if exception occurs inside a synchronized method
– Mutex execution of synchronized methods (beware deadlock)

 class Account {
 private int balance;

 // object constructor
 public Account (int initialBalance) {
 balance = initialBalance;
 }
 public synchronized int getBalance() {
 return balance;
 }
 public synchronized void deposit(int amount) {
 balance += amount;
 }
 }

9.65Crooks & Zaharia CS162 © UCB Spring 2025

Java Support for Monitors

Along with a lock, every object has a single condition variable associated
with it

To wait inside a synchronized method:

– void wait();

– void wait(long timeout);

To signal while in a synchronized method:

– void notify();

– void notifyAll();

9.66Crooks & Zaharia CS162 © UCB Spring 2025

Hardware

Higher-level
API

Programs

Where are we going with synchronization?

Implement various higher-level synchronization primitives using atomic
operations

Load/Store Disable Interrupts Test&Set Compare&Swap

Locks Semaphores Monitors Send/Receive

Shared Programs

9.67Crooks & Zaharia CS162 © UCB Spring 2025

Topic Breakdown

Virtualizing the CPU

Process Abstraction and API

Threads and Concurrency

Scheduling

Virtualizing Memory
Virtual Memory

Paging

Persistence
IO devices

File Systems

Distributed Systems
Challenges with distribution

Data Processing & Storage

9.68Crooks & Zaharia CS162 © UCB Spring 2025

Goals for Today

• What is scheduling?

• What makes a good scheduling policy?

• What are existing schedulers and how do they perform?

9.69Crooks & Zaharia CS162 © UCB Spring 2025

The Scheduling Loop!

if (readyThreads(TCBs)) {
 nextTCB = selectThread(TCBs);
 run(nextTCB);
} else {
 run_idle_thread();
}

1. Which task to run next?

2. How frequently does this
loop run?

3. What happens if run never
returns?

9.70Crooks & Zaharia CS162 © UCB Spring 2025

Recall: Thread Life Cycle

Running Ready

Blocked

Request I/O Finish I/O

Descheduled

Scheduled
Dying

9.71Crooks & Zaharia CS162 © UCB Spring 2025

Recall: What triggers a scheduling decision?

CPUReady Queue

I/O Queue

Wait Queue Wait for an interrupt

Time Slice Expired

IO Request

Fork a child / Yield

Interrupt Occurs

IO Occurs

9.72Crooks & Zaharia CS162 © UCB Spring 2025

What makes a good scheduling policy?

A hopeless Queue.

The Queue For the UK Queen

6 miles (10 KM) long.

Visible from Space.

A bad but more realistic queue.

The DMV

9.73Crooks & Zaharia CS162 © UCB Spring 2025

What makes a good scheduling policy?

What does the DMV care
about?

What do individual users care
about?

9.74Crooks & Zaharia CS162 © UCB Spring 2025

Important Performance Metrics

Response time (or latency).

User-perceived time to do some task

Throughput.

The rate at which tasks are completed

Scheduling overhead.

The time to switch from one task to another.

Predictability.

Variance in response times for repeated requests.

9.75Crooks & Zaharia CS162 © UCB Spring 2025

Important Performance Metrics

Fairness

Equality in the performance perceived by one task

Starvation

The lack of progress for one task, due to resources being allocated to different tasks

9.76Crooks & Zaharia CS162 © UCB Spring 2025

Sample Scheduling Policies

Assume DMV job A takes 1 second, job B takes 2 days

Policy Idea: Only ever schedule users with Job A

What is the metric we are optimizing?
A) Throughput B) Latency C) Predictability D) Low-Overhead

Can the schedule lead to starvation?

A) Yes B) No

Is the schedule fair?
A) Yes B) No

9.77Crooks & Zaharia CS162 © UCB Spring 2025

Sample Scheduling Policies

Assume DMV consists only of jobs of type A.

Policy Idea: Schedule jobs randomly

What is the metric we are optimizing?
A) Throughput B) Latency C) Predictability D) Low-Overhead

Can the schedule lead to starvation?

A) Yes B) No

Is the schedule fair?
A) Yes B) No

9.78Crooks & Zaharia CS162 © UCB Spring 2025

Sample Scheduling Policies

Assume DMV consists only of 100 different types of jobs. Some jobs need Clerk A, some Clerks
A&B, others Clerk C.

Policy Idea Every time schedule a job, compute all possible orderings of jobs, pick one that
finishes quickest

What is the metric we are optimizing?
A) Throughput B) Latency C) Predictability D) Low-Overhead

Can the schedule lead to starvation?

A) Yes B) No

Is the schedule fair?
A) Yes B) No

9.81Crooks & Zaharia CS162 © UCB Spring 2025

Scheduling Policy Goals/Criteria

Minimise Response Time Maximise Throughput

While remaining fair and starvation-free

9.82Crooks & Zaharia CS162 © UCB Spring 2025

Useful metrics

Waiting time for P

Total Time spent waiting for CPU

Average waiting time

Average of all processes’ wait time

Response Time for P
Time to when process gets first scheduled

Completion time
Waiting time + Run time

Average completion time
Average of all processes' completion time

9.83Crooks & Zaharia CS162 © UCB Spring 2025

Assumptions

Unrealistic but simplify the problem so it can be solved

Threads are independent! One thread = One User

Only look at work-conserving scheduler

=> Never leave processor idle if work to do

9.84Crooks & Zaharia CS162 © UCB Spring 2025

Workload Assumptions

A workload is a set of tasks for some system to perform, including
how long tasks last and when they arrive

Compute-Bound

Tasks that primarily perform compute

Fully utilise CPU

IO Bound

Mostly wait for IO, limited compute

Often in the
Blocked state

9.85Crooks & Zaharia CS162 © UCB Spring 2025

First-Come, First-Served (FCFS)

Run tasks in order of arrival.

Run task until completion (or blocks on IO).
No preemption

This is the DMV model.

Also called FIFO

9.86Crooks & Zaharia CS162 © UCB Spring 2025

First-Come, First-Served (FCFS)

Process Burst Time

P1 3

P2 3

P3 24
0 3 6 30

P3P2P1

What is the average completion time?

What is the average waiting time?

(
 3+6+30

3 = 13)

(
 0+3+6

3 = 3)

9.87Crooks & Zaharia CS162 © UCB Spring 2025

First-Come, First-Served (FCFS)

Process Burst Time

P3 24

P2 3

P1 3 0 24 27 30

P3P2P1

What is the average completion time?

What is the average waiting time?

(
 24+27+30

3
= 27)

(
 0+24+27

3
= 17)

9.88Crooks & Zaharia CS162 © UCB Spring 2025

The Convoy Effect

FIFO/FCFS very sensitive to arrival order

Convoy effect

Short process stuck behind long process

Lots of small tasks build up behind long tasks

FIFO is non-preemptible

9.89Crooks & Zaharia CS162 © UCB Spring 2025

CPU

The Convoy Effect

FIFO/FCFS very sensitive to arrival order

Convoy effect

Short process stuck behind long process

Lots of small tasks build up behind long tasks

FIFO is non-preemptible

P1 P2

9.90Crooks & Zaharia CS162 © UCB Spring 2025

CPU

The Convoy Effect

FIFO/FCFS very sensitive to arrival order

Convoy effect

Short process stuck behind long process

Lots of small tasks build up behind long tasks

FIFO is non-preemptible

P1 P2

9.91Crooks & Zaharia CS162 © UCB Spring 2025

CPU

The Convoy Effect

FIFO/FCFS very sensitive to arrival order

Convoy effect

Short process stuck behind long process

Lots of small tasks build up behind long tasks

FIFO is non-preemptible

P2

9.92Crooks & Zaharia CS162 © UCB Spring 2025

CPU

The Convoy Effect

FIFO/FCFS very sensitive to arrival order

Convoy effect

Short process stuck behind long process

Lots of small tasks build up behind long tasks

FIFO is non-preemptible

P3

9.93Crooks & Zaharia CS162 © UCB Spring 2025

CPU

The Convoy Effect

FIFO/FCFS very sensitive to arrival order

Convoy effect

Short process stuck behind long process

Lots of small tasks build up behind long tasks

FIFO is non-preemptible

P3 P4

9.94Crooks & Zaharia CS162 © UCB Spring 2025

CPU

The Convoy Effect

FIFO/FCFS very sensitive to arrival order

Convoy effect

Short process stuck behind long process

Lots of small tasks build up behind long tasks

FIFO is non-preemptible

P3 P4 P5

9.95Crooks & Zaharia CS162 © UCB Spring 2025

FIFO/FCFS very sensitive to arrival order

Convoy effect

Short process stuck behind long process

Lots of small tasks build up behind long tasks

FIFO is non-preemptible

CPU

The Convoy Effect

P3 P4 P5 P6

9.96Crooks & Zaharia CS162 © UCB Spring 2025

FIFO/FCFS very sensitive to arrival order

Convoy effect

Short process stuck behind long process

Lots of small tasks build up behind long tasks

FIFO is non-preemptible

CPU

The Convoy Effect

P3 P4 P5 P6
Can FIFO lead to starvation?

9.97Crooks & Zaharia CS162 © UCB Spring 2025

FCFS/FIFO Summary

The good

Simple
Low Overhead
No Starvation

The bad

 Sensitive to arrival order (poor
predictability)

The ugly

 Convoy Effect.
 Bad for Interactive Tasks

9.98Crooks & Zaharia CS162 © UCB Spring 2025

Shortest Job First

How can we minimise average completion time?

By scheduling jobs in order of

estimated completion time

This is the “10 items or less” line at Safeway

9.99Crooks & Zaharia CS162 © UCB Spring 2025

Shortest Job First

Process Burst Time

P1 3

P2 6

P3 24

P4 1

0 1 4 10

P1P4

What is the average completion time?

Can prove that SJF generates optimal average completion time if
all jobs arrive at the same time

(
 1+4+10+34

4
= 12.25)

P2 P3

34

9.100Crooks & Zaharia CS162 © UCB Spring 2025

Are we done?

Can SJF lead to starvation?

Yes

Any scheduling policy that always favours a fixed
property for scheduling leads to starvation

CPU P2P1

9.101Crooks & Zaharia CS162 © UCB Spring 2025

Are we done?

Can SJF lead to starvation?

Yes

Any scheduling policy that always favours a fixed
property for scheduling leads to starvation

CPU P2P1 P3

9.102Crooks & Zaharia CS162 © UCB Spring 2025

Are we done?

Can SJF lead to starvation?

Yes

Any scheduling policy that always favours a fixed
property for scheduling leads to starvation

CPU P2 P4P3

9.103Crooks & Zaharia CS162 © UCB Spring 2025

Are we done?

Is SFJ subject to the convoy effect?

Yes

Any non-preemptible scheduling policy suffers from
convoy effect

CPU P2

9.104Crooks & Zaharia CS162 © UCB Spring 2025

Are we done?

Is SFJ subject to the convoy effect?

Yes

Any non-preemptible scheduling policy suffers from
convoy effect

CPU P2 P4 P5 P6

9.105Crooks & Zaharia CS162 © UCB Spring 2025

SJF Summary

The good

Optimal Average Completion Time
when jobs arrive simultaneously

The bad

 Sensitive to arrival order (poor
predictability)

The ugly

 Can lead to starvation!

Requires knowing duration of job

9.106Crooks & Zaharia CS162 © UCB Spring 2025

Shortest Time to Completion First (STCF)

Introduce the notion of preemption

A running task can be de-scheduled before completion.

STCF

Schedule the task with the least amount of time left

9.107Crooks & Zaharia CS162 © UCB Spring 2025

Shortest Time to Completion First (STCF)

STCF

Schedule the task with the least amount of time left

Process Burst Time (left)

P1 3

P2 6

P3 24

P4 16

Arrival Time

10

1

0

20

9.108Crooks & Zaharia CS162 © UCB Spring 2025

Shortest Time to Completion First (STCF)

Process Burst Time (left)

P1 3

P2 6

P3 24

P4 16

Arrival Time

10

1

0

18

P3

10

9.109Crooks & Zaharia CS162 © UCB Spring 2025

Shortest Time to Completion First (STCF)

Process Burst Time (left)

P1 3

P2 6

P3 23

P4 16

Arrival Time

10

1

0

18

P3

10

P2

7

9.110Crooks & Zaharia CS162 © UCB Spring 2025

Shortest Time to Completion First (STCF)

Process Burst Time (left)

P1 3

P2 0

P3 23

P4 16

Arrival Time

10

1

0

20

P3

10

P2

7

P3

10

9.111Crooks & Zaharia CS162 © UCB Spring 2025

Shortest Time to Completion First (STCF)

Process Burst Time (left)

P1 3

P2 0

P3 20

P4 16

Arrival Time

10

1

0

18

P3

10

P2

7

P3

10

P1

13

9.112Crooks & Zaharia CS162 © UCB Spring 2025

Shortest Time to Completion First (STCF)

Process Burst Time (left)

P1 0

P2 0

P3 15

P4 16

Arrival Time

10

1

0

18

P3

10

P2

7

P3

10

P1

13

P3

18

9.113Crooks & Zaharia CS162 © UCB Spring 2025

Shortest Time to Completion First (STCF)

Process Burst Time (left)

P1 0

P2 0

P3 0

P4 15

Arrival Time

10

1

0

18

P3

10

P2

7

P3

10

P1

13

P3

33

9.114Crooks & Zaharia CS162 © UCB Spring 2025

Shortest Time to Completion First (STCF)

Process Burst Time (left)

P1 0

P2 0

P3 0

P4 15

Arrival Time

10

1

0

18

P3

10

P2

7

P3

10

P1

13

P3

32

P4

9.115Crooks & Zaharia CS162 © UCB Spring 2025

Are we done?

Can STCF lead to starvation?

Yes

Any scheduling policy that always favours a fixed
property for scheduling leads starvation

No change!

9.116Crooks & Zaharia CS162 © UCB Spring 2025

Are we done?

Is STCF subject to the convoy effect?

No!

STCF is a preemptible policy

9.117Crooks & Zaharia CS162 © UCB Spring 2025

STCF Summary

The good

Optimal Average Completion Time
Always

The bad

The ugly

 Can lead to starvation!

Requires knowing duration of job

9.118Crooks & Zaharia CS162 © UCB Spring 2025

Taking a step back

Property FCFS SJF STCF

Optimise Average
Completion Time

Prevent Starvation

Prevent
Convoy Effect

Psychic Skills Not
Needed

Can we design a non-psychic, starvation-free
scheduler with good response time?

9.119Crooks & Zaharia CS162 © UCB Spring 2025

Round-Robin Scheduling

RR runs a job for a time slice

(a scheduling quantum)

Once time slice over,

Switch to next job in ready queue.

=> Called time-slicing

9.120Crooks & Zaharia CS162 © UCB Spring 2025

Process Burst Time
P1 53
P2 8
P3 68
P4 24

RR with Time Quantum = 20

9.121Crooks & Zaharia CS162 © UCB Spring 2025

Process Burst Time
P1 53 => 33

P2 8
P3 68
P4 24

P1

0 20

RR with Time Quantum = 20

9.122Crooks & Zaharia CS162 © UCB Spring 2025

Process Burst Time
P1 33

P2 8 => 0
P3 68
P4 24

P1

0 20

RR with Time Quantum = 20

P2

28

9.123Crooks & Zaharia CS162 © UCB Spring 2025

Process Burst Time
P1 33
P2 0

P3 68 => 48
P4 24

P1

0 20

RR with Time Quantum = 20

P2

28

P3

48

9.124Crooks & Zaharia CS162 © UCB Spring 2025

Process Burst Time
P1 33
P2 0
P3 48

P4 24 => 4

P1

0 20

RR with Time Quantum = 20

P2

28

P3

48

P4

68

9.125Crooks & Zaharia CS162 © UCB Spring 2025

Process Burst Time
P1 33 => 13

P2 0
P3 48
P4 4

P1

0 20

RR with Time Quantum = 20

P2

28

P3

48

P4

68

P1

88

9.126Crooks & Zaharia CS162 © UCB Spring 2025

Process Burst Time
P1 13
P2 0

P3 48 => 28
P4 4

P1

0 20

RR with Time Quantum = 20

P2

28

P3

48

P4

68

P1

88

P3

108

9.127Crooks & Zaharia CS162 © UCB Spring 2025

Process Burst Time
P1 13
P2 0
P3 28

P4 4 => 0

P1

0 20

RR with Time Quantum = 20

P2

28

P3

48

P4

68

P1

88

P3

108

P4

112

9.128Crooks & Zaharia CS162 © UCB Spring 2025

P1

0 20

P2

28

P3

48

P4

68

P1

88

P3

108

P4 P1 P3 P3

112 125 145 153

RR with Time Quantum = 20

Waiting time

Average waiting time

Average completion time

(
 72+20+85+88

4
= 66.25)

• P1= 0 + (68-20)+(112-88)=72
• P2=(20-0)=20
• P3=(28-0)+(88-48)+(125-108)+0=85
• P4=(48-0)+(108-68)=88

(
125+28+153+112

4
= 104.25)

9.130Crooks & Zaharia CS162 © UCB Spring 2025

Decrease Completion Time

• T1: Burst Length 10 T3: Burst Length 10

• T2: Burst Length 5

Q = 10

Average Completion Time = (10 + 15 + 25)/3 = 16.7

Q = 5

Average Completion Time = (20 + 10 + 25)/3 = 18.3

T1

0 10

T2

15

T1

0 15

T2 T1

5 20

T3

25

10

T3 T3

25

9.131Crooks & Zaharia CS162 © UCB Spring 2025

Small scheduling quantas lead to

frequent context switches

- Mode switch overhead

- Trash cache-state

q must be large with respect to context switch,

otherwise overhead is too high

Switching is not free!

9.132Crooks & Zaharia CS162 © UCB Spring 2025

Are we done?

Can RR lead to starvation?

No

No process waits more than (n-1)q time units

9.133Crooks & Zaharia CS162 © UCB Spring 2025

Are we done?

Can RR suffer from convoy effect?

No

Only run a time-slice at a time

9.134Crooks & Zaharia CS162 © UCB Spring 2025

RR Summary

The good

Bounded response time

The bad

Completion time can be high
(stretches out long jobs)

The ugly

 Overhead of context switching

9.135Crooks & Zaharia CS162 © UCB Spring 2025

Taking a step back

Property FCFS SJF STCF

Optimise Average
Completion Time

Prevent Starvation

Prevent
Convoy Effect

Psychic Skills Not
Needed

9.136Crooks & Zaharia CS162 © UCB Spring 2025

Taking a step back

Property FCFS SJF STCF RR

Optimise
Average

Completion
Time

Optimise
Average

Response Time

Prevent
Starvation

Prevent
Convoy Effect

Psychic Skills
Not Needed

9.137Crooks & Zaharia CS162 © UCB Spring 2025

FCFS and Round Robin Showdown

Assuming zero-cost context-switching time,
is RR always better than FCFS?

10 jobs, each take 100s of CPU time
RR scheduler quantum of 1s

All jobs start at the same time

Job # FIFO RR

1 100 991

2 200 992

… … …

9 900 999

10 1000 1000

Job # FIFO

1 100

2 200

… …

9 900

10 1000

9.138Crooks & Zaharia CS162 © UCB Spring 2025

Earlier Example with Different Time Quantum

P2

[8]
P4

[24]
P1

[53]
P3

[68]

0 8 32 85 153

Best FCFS:

Quantum P1 P2 P3 P4 Average

Best FCFS 85 8 16 32 69.5

Q=1 137 30 153 81 100.5

Q=5 135 28 153 82 99.5

Q=8 133 16 153 80 99,5

Q=10 135 18 153 92 104.5

Q=20 125 28 153 112 104.5

Worst FCFS 121 153 68 145 121.75

	Default Section
	Slide 1: CS162 Operating Systems and Systems Programming Lecture 9 Monitors (Continued) Scheduling Core Concepts and Classic Policies
	Slide 2: Where are we going with synchronization?
	Slide 3: Recall: Monitors
	Slide 4: Recall: Wait & Signal Pattern
	Slide 5: Recall: Hoare Semantics
	Slide 6: Recall: Mesa Semantics
	Slide 7: Basic Structure of Mesa Monitor Program
	Slide 8: Readers/Writers Problem
	Slide 9: Basic Readers/Writers Solution
	Slide 10: Basic Readers/Writers Solution
	Slide 11: Code for a Reader
	Slide 12: Code for a Writer
	Slide 13: Simulation of Readers/Writers Solution
	Slide 14: Simulation of Readers/Writers Solution
	Slide 15: Simulation of Readers/Writers Solution
	Slide 16: Simulation of Readers/Writers Solution
	Slide 17: Simulation of Readers/Writers Solution
	Slide 18: Simulation of Readers/Writers Solution
	Slide 19: Simulation of Readers/Writers Solution
	Slide 20: Simulation of Readers/Writers Solution
	Slide 21: Simulation of Readers/Writers Solution
	Slide 22: Simulation of Readers/Writers Solution
	Slide 23: Simulation of Readers/Writers Solution
	Slide 24: Simulation of Readers/Writers Solution
	Slide 25: Simulation of Readers/Writers Solution
	Slide 26: Simulation of Readers/Writers Solution
	Slide 27: Simulation of Readers/Writers Solution
	Slide 28: Simulation of Readers/Writers Solution
	Slide 29: Simulation of Readers/Writers Solution
	Slide 30: Simulation of Readers/Writers Solution
	Slide 31: Simulation of Readers/Writers Solution
	Slide 32: Simulation of Readers/Writers Solution
	Slide 33: Simulation of Readers/Writers Solution
	Slide 34: Simulation of Readers/Writers Solution
	Slide 35: Simulation of Readers/Writers Solution
	Slide 36: Simulation of Readers/Writers Solution
	Slide 37: Simulation of Readers/Writers Solution
	Slide 38: Simulation of Readers/Writers Solution
	Slide 39: Simulation of Readers/Writers Solution
	Slide 40: Simulation of Readers/Writers Solution
	Slide 41: Simulation of Readers/Writers Solution
	Slide 42: Simulation of Readers/Writers Solution
	Slide 43: Simulation of Readers/Writers Solution
	Slide 44: Simulation of Readers/Writers Solution
	Slide 45: Simulation of Readers/Writers Solution
	Slide 46: Simulation of Readers/Writers Solution
	Slide 47: Simulation of Readers/Writers Solution
	Slide 48: Simulation of Readers/Writers Solution
	Slide 49: Simulation of Readers/Writers Solution
	Slide 50: Simulation of Readers/Writers Solution
	Slide 51: Simulation of Readers/Writers Solution
	Slide 52: Simulation of Readers/Writers Solution
	Slide 53: Questions
	Slide 54: Questions
	Slide 55: Code for a Reader
	Slide 56: Code for a Writer
	Slide 57: Mesa Monitor Conclusion
	Slide 58: C Language Support for Synchronization
	Slide 59: Concurrency and Synchronization in C
	Slide 60: C++ Language Support for Synchronization
	Slide 61: C++ Language Support for Synchronization (con’t)
	Slide 62: Much better: C++ Lock Guards
	Slide 63: Python with Keyword
	Slide 64: Java synchronized Keyword
	Slide 65: Java Support for Monitors
	Slide 66: Where are we going with synchronization?
	Slide 67: Topic Breakdown
	Slide 68: Goals for Today
	Slide 69: The Scheduling Loop!
	Slide 70: Recall: Thread Life Cycle
	Slide 71: Recall: What triggers a scheduling decision?
	Slide 72: What makes a good scheduling policy?
	Slide 73
	Slide 74: Important Performance Metrics
	Slide 75: Important Performance Metrics
	Slide 76: Sample Scheduling Policies
	Slide 77: Sample Scheduling Policies
	Slide 78: Sample Scheduling Policies
	Slide 81: Scheduling Policy Goals/Criteria
	Slide 82: Useful metrics
	Slide 83: Assumptions
	Slide 84: Workload Assumptions
	Slide 85: First-Come, First-Served (FCFS)
	Slide 86: First-Come, First-Served (FCFS)
	Slide 87: First-Come, First-Served (FCFS)
	Slide 88: The Convoy Effect
	Slide 89: The Convoy Effect
	Slide 90: The Convoy Effect
	Slide 91: The Convoy Effect
	Slide 92: The Convoy Effect
	Slide 93: The Convoy Effect
	Slide 94: The Convoy Effect
	Slide 95: The Convoy Effect
	Slide 96: The Convoy Effect
	Slide 97: FCFS/FIFO Summary
	Slide 98: Shortest Job First
	Slide 99: Shortest Job First
	Slide 100: Are we done?
	Slide 101: Are we done?
	Slide 102: Are we done?
	Slide 103: Are we done?
	Slide 104: Are we done?
	Slide 105: SJF Summary
	Slide 106: Shortest Time to Completion First (STCF)
	Slide 107: Shortest Time to Completion First (STCF)
	Slide 108: Shortest Time to Completion First (STCF)
	Slide 109: Shortest Time to Completion First (STCF)
	Slide 110: Shortest Time to Completion First (STCF)
	Slide 111: Shortest Time to Completion First (STCF)
	Slide 112: Shortest Time to Completion First (STCF)
	Slide 113: Shortest Time to Completion First (STCF)
	Slide 114: Shortest Time to Completion First (STCF)
	Slide 115: Are we done?
	Slide 116: Are we done?
	Slide 117: STCF Summary
	Slide 118: Taking a step back
	Slide 119: Round-Robin Scheduling
	Slide 120: RR with Time Quantum = 20
	Slide 121: RR with Time Quantum = 20
	Slide 122: RR with Time Quantum = 20
	Slide 123: RR with Time Quantum = 20
	Slide 124: RR with Time Quantum = 20
	Slide 125: RR with Time Quantum = 20
	Slide 126: RR with Time Quantum = 20
	Slide 127: RR with Time Quantum = 20
	Slide 128: RR with Time Quantum = 20
	Slide 130: Decrease Completion Time
	Slide 131: Switching is not free!
	Slide 132: Are we done?
	Slide 133: Are we done?
	Slide 134: RR Summary
	Slide 135: Taking a step back
	Slide 136: Taking a step back
	Slide 137: FCFS and Round Robin Showdown
	Slide 138: Earlier Example with Different Time Quantum

