
CS162
Operating Systems and
Systems Programming

Lecture 6

Concurrency

Professor Natacha Crooks & Matei Zaharia

https://cs162.org/

Slides based on prior slide decks from David Culler, Ion Stoica, John Kubiatowicz, , Alison Norman and Lorenzo Alvisi

6.2Crooks & Zaharia CS162 © UCB Spring 2025

Goals for Today

• Threads and more threads

• Challenges and Pitfalls of Concurrency

• Synchronization Operations/Critical Sections

• How to build a lock?

• Atomic Instructions

6.3Crooks & Zaharia CS162 © UCB Spring 2025

What is a thread?

A single execution sequence that represents
a separately schedulable task.

Virtualizes the processor.
Each thread runs on a dedicated virtual processor (with variable speed).

Infinitely many such processors.

Threads let users define each task with sequential code. But run each task concurrently.

6.4Crooks & Zaharia CS162 © UCB Spring 2025

What is a thread?

1

CPU

2

CPU

N

CPU

3

CPU

…

Programmer Abstraction

1

CPU

3

Physical Reality

2

n

…

…

6.5Crooks & Zaharia CS162 © UCB Spring 2025

Recall: Thread ≠ Process

Processes defines the granularity at which the OS offers isolation and protection

Threads capture concurrent sequences of computation

Processes consist of one or more threads!

Process
Protection

Thread
Concurrency

6.6Crooks & Zaharia CS162 © UCB Spring 2025

All you need is love (and a stack)

No protection

Threads inside the same process and
are not isolated from each other

Individual execution

Threads execute disjoint instruction
streams. Need own execution context

Share an address space

& share IO state (FDs)

Individual stack, register state (including EIP,
ESP, EBP)

6.7Crooks & Zaharia CS162 © UCB Spring 2025

P
C

B

All you need is love (and a stack)

Code

Data

File Descriptor Table

TCB
Thread 1

Saved
Registers

Heap

Stack

Metadata

TCB
Thread 2

Saved
Registers

Stack

Metadata

6.8Crooks & Zaharia CS162 © UCB Spring 2025

Recall: Threads in Linux

Everything is a thread (task_struct)

Scheduler only schedules task_struct

Processes are better viewed as the containers in which threads execute

To fork a process:

Invoke clone(…)

To create a thread:

Invoke clone(CLONE_VM | CLONE_FS |
CLONE_FILES | CLONE_SIGHAND, 0)

CLONE_VM: Share address space. CLONE_FS: share file system. CLONE_FILES: share open files.
CLONE_SIGHAND: share handlers with parents

6.9Crooks & Zaharia CS162 © UCB Spring 2025

OS Library API for Threads (pThreads)

int pthread_create(pthread_t *thread, … .

 void *(*start_routine)(void*), void *arg);

Creates a thread that runs start_routine

void pthread_exit(void *value_ptr);

Terminates calling thread and returns value_ptr to any successful join call

int pthread_join(pthread_t thread, void **value_ptr);

Suspends execution of calling thread until target thread terminates

int pthread_yield();

Makes calling thread yield the CPU to other threads

6.10Crooks & Zaharia CS162 © UCB Spring 2025

Pthread Example

void *mythread(void *arg) {

printf("%s\n", (char *) arg);

 return NULL;

 }

 int main(int argc, char *argv[]) {

 pthread_t p1, p2;

 printf("main: begin\n");

 pthread_create(&p1, NULL, mythread, "A");

 pthread_create(&p2, NULL, mythread, "B");

 // join waits for the threads to finish

 pthread_join(p1, NULL);

 pthread_join(p2, NULL);

 printf("main: end\n");

}

6.11Crooks & Zaharia CS162 © UCB Spring 2025

Fork-Join Pattern

Main thread creates (forks) multiple sub-threads, passing them args to work on…

… and then joins with them, collecting results.

create

exit

join

6.12Crooks & Zaharia CS162 © UCB Spring 2025

Example: Multithreaded Web Server

// Socket setup code elided…

while (1) {

 // Accept a new client connection, obtaining a new socket

 pthread_t tid;

 int conn_socket = accept(server_socket, NULL, NULL);

 int* arg = (int*) malloc(sizeof(int));

 *arg = conn_socket;

 pthread_create(&tid, NULL &serve_client, &arg);

}

close(server_socket);

6.13Crooks & Zaharia CS162 © UCB Spring 2025

// Socket setup code elided…

while (1) {

 // Accept a new client connection, obtaining a new socket

 int conn_socket = accept(server_socket, NULL, NULL);

 pid_t pid = fork();

 if (pid == 0) { // I am the child

 close(server_socket);

 serve_client(conn_socket);

 close(conn_socket);

 exit(0);

 } else { // // I am the parent

 close(conn_socket);

 }

}

close(server_socket);

Comparison: Fork-based Web Server

6.14Crooks & Zaharia CS162 © UCB Spring 2025

Reviewing the pthread_create(…)

Do some work like a normal fn…
 place syscall # into %eax

 put args into registers %ebx, …
 special trap instruction

Mode switches & switches to kernel stack.
Saves recovery state

Jump to interrupt vector table at location 128.
Hands control to syscall_handler

Use %eax register to index into system call dispatch table. Invoke do_fork()
method. Initialize new TCB. Mark thread READY. Push errcode into %eax

get return values from regs
 Do some more work like a normal fn…

Restore recovery state and mode switch

OS Library

OS Library

CPU

CPU

Kernel

6.15Crooks & Zaharia CS162 © UCB Spring 2025

With great power comes great concurrency

Protection is at process level. Threads not isolated.
pthread_t tid[2];

int counter;

void* doSomething(void *arg) {

 unsigned long i = 0;

 for (int i = 0 ; i < 1000 ; i++) {

 counter += 1;

 }

 return NULL;

}

int main(void) {

 int i = 0;

 while(i++ < 2) {

 pthread_create(&(tid[i]), NULL, &doSomething, NULL);

 }

 pthread_join(tid[0], NULL);

 pthread_join(tid[1], NULL);

 printf(“Counter %d \n”, counter);

 return 0;

}

What will be the final answer?

matei@laptop> gcc concurrency.c -o

concurrency –pthread

matei@laptop> ./concurrency

Counter 2000

matei@laptop> ./concurrency

Counter 1937

matei@laptop> ./concurrency

Counter 1899

6.16Crooks & Zaharia CS162 © UCB Spring 2025

With great power comes great concurrency

Protection is at process level.

Threads not isolated.

Share an address space.

Non-deterministic interleaving of threads

T1 T1 T1 T2 T2 T2

T1 T2 T2 T1 T1 T2

T2 T2 T2 T1 T1 T1

6.17Crooks & Zaharia CS162 © UCB Spring 2025

With great power comes great concurrency

Public Enemy #1:

THE RACE CONDITION

Today and next three lectures: how can we regulate access to shared data
across threads?

6.18Crooks & Zaharia CS162 © UCB Spring 2025

Multiprocessing vs Multiprogramming

Multiprocessing  multiple CPUs

Multiprogramming  multiple jobs or processes

Multithreading  multiple threads per process

6.19Crooks & Zaharia CS162 © UCB Spring 2025

Multiprocessing vs Multiprogramming

What does it mean to run two threads “concurrently”?

=> Scheduler is free to run threads in any order

=> Can choose to run each thread to completion or time-slice in big or small chunks

A B C

BA ACB C BMultiprogramming

A
B
C

Multiprocessing

6.20Crooks & Zaharia CS162 © UCB Spring 2025

ATM Bank Server

Service a set of requests

Do so without corrupting database

Don’t hand out too much money

6.21Crooks & Zaharia CS162 © UCB Spring 2025

ATM Bank server Example

Suppose we wanted to implement a server process to handle requests from an
ATM network:

 BankServer() {
 while (TRUE) {
 ReceiveRequest(&op, &acctId, &amount);
 ProcessRequest(op, acctId, amount);
 }
}

 ProcessRequest(op, acctId, amount) {
 if (op == deposit) Deposit(acctId, amount);
 else if …
}

 Deposit(acctId, amount) {
 acct = GetAccount(acctId); /* may use disk I/O */
 acct->balance += amount;
 StoreAccount(acct); /* requires disk I/O */
}

6.22Crooks & Zaharia CS162 © UCB Spring 2025

Event Driven Version of ATM server

Suppose we only had one CPU. Still want to overlap I/O with computation. Without
threads, we would have to rewrite in event-driven style:

 BankServer() {
 while(TRUE) {
 event = WaitForNextEvent();
 if (event == ATMRequest)
 StartOnRequest();
 else if (event == AcctAvail)
 ContinueRequest();
 else if (event == AcctStored)
 FinishRequest();
 }
 }

6.23Crooks & Zaharia CS162 © UCB Spring 2025

Can Threads Make This Easier?

Threads yield overlapped I/O and computation without “deconstructing” code
into non-blocking fragments

One thread per request

Requests proceeds to completion, blocking as required

6.24Crooks & Zaharia CS162 © UCB Spring 2025

Can Threads Make This Easier?

Suppose we wanted to implement a server process to handle requests from an
ATM network:

 BankServer() {
 while (TRUE) {
 ReceiveRequest(&op, &acctId, &amount);
 START_THREAD(ProcessRequest(op, acctId, amount))
 }
}

 ProcessRequest(op, acctId, amount) {
 if (op == deposit) Deposit(acctId, amount);
 else if …
}

 Deposit(acctId, amount) {
 acct = GetAccount(acctId); /* may use disk I/O */
 acct->balance += amount;
 StoreAccount(acct); /* requires disk I/O */
}

6.25Crooks & Zaharia CS162 © UCB Spring 2025

Remember the Race Condition …

Shared state can get corrupted

 Thread 1 Thread 2

 load r1, acct->balance

 load r1, acct->balance

 add r1, amount2

 store r1, acct->balance

 add r1, amount1

 store r1, acct->balance

6.26Crooks & Zaharia CS162 © UCB Spring 2025

Many Possible Executions

6.27Crooks & Zaharia CS162 © UCB Spring 2025

Problem is at the Lowest Level

Most of the time, threads are working on separate data, so scheduling
doesn’t matter

 Thread A Thread B
 x = 1; y = 2;

However, what about (Initially, y = 12):

Thread A Thread B
x = 1; y = 2;

x = y+1; y = y*2;

What if two threads are both writing to x?

6.28Crooks & Zaharia CS162 © UCB Spring 2025

Atomic Operations

An operation that always runs to completion, or not at all

It is indivisible: it cannot be stopped in the middle, and state cannot be modified by
someone else in the middle

Fundamental building block

 If no atomic operations, then have no way for threads to work together

6.29Crooks & Zaharia CS162 © UCB Spring 2025

Atomic Operations

On most machines, memory references and assignments (i.e. loads and stores) of
words are atomic

Consequently – weird examples with partial writes to ints can’t happen

Many instructions are not atomic

– Double-precision floating point store often not atomic

– VAX and IBM 360 had an instruction to copy a whole array

6.30Crooks & Zaharia CS162 © UCB Spring 2025

Another Concurrent Program Example

Two threads, A and B, compete with each other

 Thread A Thread B

 i = 0; i = 0;
 while (i < 10) while (i > -10)
 i = i + 1; i = i – 1;
 printf(“A wins!”); printf(“B wins!”);

Assume that memory loads and stores are atomic, but incrementing and
decrementing are not atomic

What happens?

6.31Crooks & Zaharia CS162 © UCB Spring 2025

Definitions

Synchronization

Using atomic operations to ensure cooperation between threads

Mutual Exclusion

Ensuring that only one thread does a particular thing at a time

Critical Section

Piece of code that only one thread can execute at once. Only one thread
at a time will get into this section of code

6.32Crooks & Zaharia CS162 © UCB Spring 2025

Locks

Prevents someone from doing something

Lock() before entering critical section and before accessing shared data

Unlock() when leaving, after accessing shared data

Wait if locked

Important idea:

All synchronization involves waiting

6.33Crooks & Zaharia CS162 © UCB Spring 2025

API for Locks

Locks need to be allocated and initialized:

– struct Lock mylock or pthread_mutex_t mylock;

– lock_init(&mylock) or mylock = PTHREAD_MUTEX_INITIALIZER;

Locks provide two atomic operations:

– acquire(&mylock) – wait until lock is free; then mark it as busy

– release(&mylock) – mark lock as free

» Should only be called by a thread that currently holds the lock

6.34Crooks & Zaharia CS162 © UCB Spring 2025

How would you fix the ATM problem?

(No, getting rid of money is not an option for this class)

6.35Crooks & Zaharia CS162 © UCB Spring 2025

Identify critical sections (atomic instruction sequences)

and add locking

 Deposit(acctId, amount) {
 acquire(&mylock) // Wait if someone else in critical section!

 acct = GetAccount(actId);
 acct->balance += amount;
 StoreAccount(acct);

 release(&mylock) // Release someone into critical section
 }

Fix banking problem with Locks!

Critical Section

6.36Crooks & Zaharia CS162 © UCB Spring 2025

Thread CThread AThread B

Thread A

Fix banking problem with Locks!

Thread A Thread C

Thread B

Thread B

acquire(&mylock)

release(&mylock)
Critical Section

Threads serialized by lock
through critical section.

Only one thread at a time

6.37Crooks & Zaharia CS162 © UCB Spring 2025

Threaded programs must work for all interleavings of thread instruction
sequences

Cooperating threads inherently non-deterministic and non-reproducible

Really hard to debug unless carefully designed!

Correctness Requirements

6.38Crooks & Zaharia CS162 © UCB Spring 2025

Machine for radiation therapy

Software control of electron
accelerator and electron beam/

Xray production

Software control of dosage

Concurrency bugs caused the
death of several patients

Therac-25

6.39Crooks & Zaharia CS162 © UCB Spring 2025

The Importance of Milk

6.40Crooks & Zaharia CS162 © UCB Spring 2025

The Importance of Milk

Great thing about OS’s – analogy between problems in OS and problems in
real life

Help you understand real life problems better

But, computers are much stupider than people

6.41Crooks & Zaharia CS162 © UCB Spring 2025

Motivating Example: “Too Much Milk”

Arrive home, put milk away3:30

Buy milk3:25

Arrive at storeArrive home, put milk away3:20

Leave for storeBuy milk3:15

Leave for store3:05

Look in Fridge. Out of milk3:00

Look in Fridge. Out of milkArrive at store3:10

Person BPerson ATime

6.42Crooks & Zaharia CS162 © UCB Spring 2025

Solve with a lock?

Lock prevents someone from doing something

– Lock before entering critical section

– Unlock when leaving

– Wait if locked

Fix the milk problem by putting a key on the refrigerator

Lock it and take key if you are going to go buy milk

Fixes too much: roommate angry if only wants OJ

6.43Crooks & Zaharia CS162 © UCB Spring 2025

Too Much Milk: Correctness Properties

Need to be careful about correctness of concurrent programs, since they are
non-deterministic

– Impulse is to start coding first, then when it doesn’t work, pull hair out

– Instead, think first, then code!

– Always write down desired behavior first

6.44Crooks & Zaharia CS162 © UCB Spring 2025

Too Much Milk: Correctness Properties

What are the correctness properties for the “Too much milk” problem???

– Never more than one person buys

– Someone buys if needed

First attempt: Restrict ourselves to use only atomic load and store operations
as building blocks

6.45Crooks & Zaharia CS162 © UCB Spring 2025

Use a note to avoid buying too much milk:
– Leave a note before buying (kind of “lock”)
– Remove note after buying (kind of “unlock”)
– Don’t buy if note (wait)

Suppose a computer tries this
(remember, only memory read/write are atomic)

 if (noMilk) {
 if (noNote) {
 leave Note;
 buy milk;
 remove note;
 }
 }

Too Much Milk: Solution #1

6.46Crooks & Zaharia CS162 © UCB Spring 2025

Too Much Milk: Solution #1

 Thread A Thread B
 if (noMilk) {

 if (noMilk) {
 if (noNote) {

 if (noNote) {
 leave Note;

 buy Milk;
 remove Note;
 }
 }
 leave Note;
 buy Milk;
 remove Note;

 }
 }

6.47Crooks & Zaharia CS162 © UCB Spring 2025

Still too much milk but only occasionally!

Thread can get context switched after checking milk and note but before buying
milk!

Solution makes problem worse since fails intermittently
– Makes it really hard to debug…

– Must work despite what the scheduler does!

Too Much Milk: Solution #1

6.48Crooks & Zaharia CS162 © UCB Spring 2025

Too Much Milk: Solution #1½

Let’s try to fix this by placing note first

 leave Note;
 if (noMilk) {
 if (noNote) {
 buy milk;
 }
 }

 remove Note;

What happens here?
– Well, with human, probably nothing bad
– With computer: no one ever buys milk

6.49Crooks & Zaharia CS162 © UCB Spring 2025

Too Much Milk Solution #2

How about labeled notes?
– Now we can leave note before checking

Algorithm looks like this:
 Thread A Thread B
 leave note A; leave note B;

 if (noNote B) { if (noNoteA) {
 if (noMilk) { if (noMilk) {
 buy Milk; buy Milk;
 } }
 } }
 remove note A; remove note B;

6.50Crooks & Zaharia CS162 © UCB Spring 2025

Too Much Milk Solution #2

Possible for neither thread to buy milk
– Context switches at exactly the wrong times can lead each to think that the other is

going to buy

Really insidious:
– Extremely unlikely this would happen, but will at worst possible time

– Probably something like this in UNIX

6.51Crooks & Zaharia CS162 © UCB Spring 2025

Too Much Milk Solution #2: problem!

I’m not getting milk, You’re getting milk

This kind of lockup is called “starvation!”

6.52Crooks & Zaharia CS162 © UCB Spring 2025

Too Much Milk Solution #3

 Thread A Thread B
 leave note A; leave note B;

 while (note B) { //X if (noNote A) { //Y
 do nothing; if (noMilk) {
 } buy milk;
 if (noMilk) { }
 buy milk; }
 } remove note B;
 remove note A;

6.53Crooks & Zaharia CS162 © UCB Spring 2025

Too Much Milk Solution #3

Both can guarantee that:
– It is safe to buy, or
– Other will buy, ok to quit

At X:
– If no note B, safe for A to buy,
– Otherwise wait to find out what will happen

At Y:
– If no note A, safe for B to buy
– Otherwise, A is either buying or waiting for B to quit

6.54Crooks & Zaharia CS162 © UCB Spring 2025

Case 1

leave note B;
if (noNote A) {\\Y

 if (noMilk) {
 buy milk;

 }
}
remove note B;

leave note A;
while (note B) {\\X

 do nothing;
};

if (noMilk) {

 buy milk; }
}
remove note A;

• “leave note A” happens before “if (noNote A)”

6.55Crooks & Zaharia CS162 © UCB Spring 2025

leave note A;
while (note B) {\\X

 do nothing;
};

if (noMilk) {

 buy milk; }
}
remove note A;

Case 1

leave note B;
if (noNote A) {\\Y

 if (noMilk) {
 buy milk;

 }
}
remove note B;

• “leave note A” happens before “if (noNote A)”

6.56Crooks & Zaharia CS162 © UCB Spring 2025

leave note A;
while (note B) {\\X

 do nothing;
};

if (noMilk) {

 buy milk; }
}
remove note A;

Case 1

leave note B;
if (noNote A) {\\Y

 if (noMilk) {
 buy milk;

 }
}
remove note B;

Wait for
note B to be
removed

• “leave note A” happens before “if (noNote A)”

6.57Crooks & Zaharia CS162 © UCB Spring 2025

Case 2

leave note B;
if (noNote A) {\\Y

 if (noMilk) {
 buy milk;

 }
}
remove note B;

leave note A;
while (note B) {\\X

 do nothing;
};

if (noMilk) {

 buy milk; }
}
remove note A;

• “if (noNote A)” happens before “leave note A”

6.58Crooks & Zaharia CS162 © UCB Spring 2025

Case 2

leave note B;
if (noNote A) {\\Y

 if (noMilk) {
 buy milk;

 }
}
remove note B;

leave note A;
while (note B) {\\X

 do nothing;
};

if (noMilk) {

 buy milk; }
}
remove note A;

• “if (noNote A)” happens before “leave note A”

6.59Crooks & Zaharia CS162 © UCB Spring 2025

Case 2

leave note B;
if (noNote A) {\\Y

 if (noMilk) {
 buy milk;

 }
}
remove note B;

leave note A;
while (note B) {\\X

 do nothing;
};

if (noMilk) {

 buy milk; }
}
remove note A;

• “if (noNote A)” happens before “leave note A”

Wait for
note B to be
removed

6.60Crooks & Zaharia CS162 © UCB Spring 2025

This Generalizes to 𝑛 Threads…

Leslie Lamport’s “Bakery
Algorithm” (1974)

6.61Crooks & Zaharia CS162 © UCB Spring 2025

Solution #3 discussion

Solution #3 works, but it’s really unsatisfactory

– Really complex – even for this simple an example

» Hard to convince yourself that this really works

– A’s code is different from B’s – what if lots of threads?

» Code would have to be slightly different for each thread

– While A is waiting, it is consuming CPU time

» This is called “busy-waiting”

6.62Crooks & Zaharia CS162 © UCB Spring 2025

Too Much Milk: Solution #4?

Recall our target lock interface:

– acquire(&milklock) – wait until lock is free, then grab

– release(&milklock) – Unlock, waking up anyone waiting

– These must be atomic operations – if two threads are waiting for the lock
and both see it’s free, only one succeeds to grab the lock

Then, our milk problem is easy:

 acquire(&milklock);

 if (nomilk)

 buy milk;

 release(&milklock);

6.63Crooks & Zaharia CS162 © UCB Spring 2025

Hardware

Higher-level
API

Programs

Where are we going with synchronization?

Implement various higher-level synchronization primitives using atomic
operations

Load/Store Disable Ints Test&Set Compare&Swap

Locks Semaphores Monitors Send/Receive

Shared Programs

	Default Section
	Slide 1: CS162 Operating Systems and Systems Programming Lecture 6 Concurrency
	Slide 2: Goals for Today
	Slide 3: What is a thread?
	Slide 4: What is a thread?
	Slide 5: Recall: Thread ≠ Process
	Slide 6: All you need is love (and a stack)
	Slide 7: All you need is love (and a stack)
	Slide 8: Recall: Threads in Linux
	Slide 9: OS Library API for Threads (pThreads)
	Slide 10: Pthread Example
	Slide 11: Fork-Join Pattern
	Slide 12: Example: Multithreaded Web Server
	Slide 13: Comparison: Fork-based Web Server
	Slide 14: Reviewing the pthread_create(…)
	Slide 15: With great power comes great concurrency
	Slide 16: With great power comes great concurrency
	Slide 17: With great power comes great concurrency
	Slide 18: Multiprocessing vs Multiprogramming
	Slide 19: Multiprocessing vs Multiprogramming
	Slide 20: ATM Bank Server
	Slide 21: ATM Bank server Example
	Slide 22: Event Driven Version of ATM server
	Slide 23: Can Threads Make This Easier?
	Slide 24: Can Threads Make This Easier?
	Slide 25: Remember the Race Condition …
	Slide 26: Many Possible Executions
	Slide 27: Problem is at the Lowest Level
	Slide 28: Atomic Operations
	Slide 29: Atomic Operations
	Slide 30: Another Concurrent Program Example
	Slide 31: Definitions
	Slide 32: Locks
	Slide 33: API for Locks
	Slide 34: How would you fix the ATM problem?
	Slide 35: Fix banking problem with Locks!
	Slide 36: Fix banking problem with Locks!
	Slide 37: Correctness Requirements
	Slide 38: Therac-25
	Slide 39: The Importance of Milk
	Slide 40: The Importance of Milk
	Slide 41: Motivating Example: “Too Much Milk”
	Slide 42: Solve with a lock?
	Slide 43: Too Much Milk: Correctness Properties
	Slide 44: Too Much Milk: Correctness Properties
	Slide 45: Too Much Milk: Solution #1
	Slide 46: Too Much Milk: Solution #1
	Slide 47: Too Much Milk: Solution #1
	Slide 48: Too Much Milk: Solution #1½
	Slide 49: Too Much Milk Solution #2
	Slide 50: Too Much Milk Solution #2
	Slide 51: Too Much Milk Solution #2: problem!
	Slide 52: Too Much Milk Solution #3
	Slide 53: Too Much Milk Solution #3
	Slide 54: Case 1
	Slide 55: Case 1
	Slide 56: Case 1
	Slide 57: Case 2
	Slide 58: Case 2
	Slide 59: Case 2
	Slide 60: This Generalizes to n Threads…
	Slide 61: Solution #3 discussion
	Slide 62: Too Much Milk: Solution #4?
	Slide 63: Where are we going with synchronization?

