CS162
Operating Systems and
Systems Programming

Lecture 4

Systems Programming
Processes and Communication

Professor Natacha Crooks & Matei Zaharia
https://cs162.org/

Slides based on prior slide decks from David Culler, lon Stoica, John Kubiatowicz, Alison Norman and Lorenzo Alvisi

Admistratrivia

Crooks & Zaharia CS162 © UCB Spring 2025

4.2

Admistratrivia

Early Drop Deadline is tomorrow!
Homework 0 is due today!

Project O has been released, Due 09/02.
This is an individual assignment, but future projects will be in assigned teams.

Crooks & Zaharia CS162 © UCB Spring 2025

4.3

We (still) don’t bite!

Lectures go fast.

When reviewing the
material, ask questions on
EdStem now!

You can do so anonymously.

Crooks & Zaharia CS162 © UCB Spring 2025

4.4

Recall: Hardware must support

1) Privileged Instructions 2) Memory Isolation
Unsafe instructions cannot be Memory accesses outside a
executed in user mode process’s address space prohibited
3) Interrupts 4) Safe Transfers
Ensure kernel can regain control Correctly transfer control from user-
from running process mode to kernel-mode and back

Crooks & Zaharia CS162 © UCB Spring 2025 4.5

Recall: Really Really Really Big Idea

The state of a program’s execution is succinctly and completely represented by CPU
register state

EIP, ESP, EBP, Eflags/PSW

Crooks & Zaharia CS162 © UCB Spring 2025

4.6

Recall: Interrupt Summary

1) Device sends signal to APIC

2) Processor detects interrupt

3) CPU saves Recovery State and switch to Kernel Stack
(setting kernel mode)

4) CPU jumps to interrupt handler table at appropriate vector.

5) Kernel runs interrupt handler

6) Restore user program
Crooks & Zaharia CS162 © UCB Spring 2025

4.7

Recall: System Call/Exceptions

1) Processor traps

2) CPU saves Recovery State, sets kernel mode and switch to Kernel Stack

3) CPU jumps to interrupt handler table at appropriate vector.

4) Kernel runs interrupt handler

5) Restore user program

Crooks & Zaharia CS162 © UCB Spring 2025

4.8

Recall: User Stack/Kernel Stack (User Mode)

User-Level Process , Kernel
Registers
interrupt handler() {
esp push eax
push ebx
eip
eflags
User Stack Kernel (Exception) Stack
eax
ebx

Crooks & Zaharia CS162 © UCB Spring 2025

4.9

Recall: User Stack/Kernel Stack (Kernel Mode)

User-Level Process

User Stack

Registers

)

esp

Kernel

interrupt handler () {
push eax
push ebx

Crooks

& Zaharia CS162 © LICR Spring 2025

Kernel (Exception) Stack

Saved by CPU

Error Code

4.10

Three “Prongs” for the Class

{ Understanding OS principles J { System Programming J

{Map Concepts to Real CodeJ

Crooks & Zaharia CS162 © UCB Spring 2025 4.11

Goals for Today

What APIs should the OS present for process creation and control?

“Everything is a file”: says Unix. What does 10 look like in Unix?

Crooks & Zaharia CS162 © UCB Spring 2025 4.12

Goal 1: The Process API

Crooks & Zaharia CS162 © UCB Spring 2025 4.13

Simple is Beautiful

Can describe majority of process management (and input/output) using
only a small number of system calls

System calls (mostly) unchanged since 1973

Crooks & Zaharia CS162 © UCB Spring 2025 4.14

Keeping it in the family

Processes in Linux form a family tree o

Each process in Linux has exactly

Each process in Linux can have

All processes start from the main init @ @

process

Crooks & Zaharia CS162 © UCB Spring 2025 4.15

Examples

A parent process a child process

Parent: Hello, World!
Parent: Waiting for Child to complete.
crooks@laptop> ./parent
g apions b Child: Hello, World! 1053 i

TIME COMMAND

:00 /init

100 /init

:01 _ /init

:00 _ -bash

: 00 | _ tmux

:04 _ tmux

: 00 _ -bash

: 00 | _ ps -x --forest
:00 _ -bash

%% _ ./parent
:01 \

crooks@laptop > ps -x --forest

(%]
(%]
(%]
(%]
(%]
(%]
(%]
(%]
(%]
(%]
(%]

Crooks & Zaharia CS162 © UCB Spring 2025 4.16

Children in the Wild (well, in the Kernel)

enum procstate { UNUSED, EMBRYO, SLEEPING, RUNNABLE, RUNNING, ZOMBIE };

// Per-process state
struct proc {
uint sz; // Size of process memory (bytes)
pde t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state

N D1A ° PTOCEe)
struc raprrame ; rap frame Ior current sysca
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

};

Xv6 Kernel (proc.h)

Crooks & Zaharia CS162 © UCB Spring 2025

Children in the Wild (well, in the Kernel)

struct task struct *task;
for (task = current; task !'= &init task; task = task->parent) ({
printk (“$s[%d]\n”, task->comm, task->pid);

}
printk (“$s[%d]\n”, task->comm, task->pid);

What does the final print statement print?

In Linux task struct definedin
<linux/sched.h>

Crooks & Zaharia CS162 © UCB Spring 2025 4.18

Process Management API

ex1t — terminate a process
fork — copy the current process
exec — change the program being run by the current process
wait — wait for a process to finish
«1l1l —send a signal (interrupt-like notification) to another process

sigaction —set handlers for signals

Crooks & Zaharia CS162 © UCB Spring 2025

4.19

Process Management API

— terminate a process

— copy the current process
— change the program being run by the current process
— wait for a process to finish
— send a signal (interrupt-like notification) to another process

— set handlers for signals

Crooks & Zaharia CS162 © UCB Spring 2025 4.20

Process Management API

— terminate a process
— change the program being run by the current process
— wait for a process to finish
— send a signal (interrupt-like notification) to another process

— set handlers for signals

Crooks & Zaharia CS162 © UCB Spring 2025 4.22

A fork in the road

Creates a new process from an original
process

Child is copy of parent process

Fork call makes complete copy of process state
- Address Space
- Code/Data Segments
- Registers (including PC and SP)
- Stack
- Pointers to Files/IO (File descriptors — see later)

Crooks & Zaharia CS162 © UCB Spring 2025 4.23

Forking under the hood

1. Allocate a new PCB.

2. Duplicates:

In Linuxdo fork () definedin - Register Values
<kernel/fork.c> _ Address Space

- Flags
- Register State
- Open Files

3. Allocates new PID

4. Mark process as in the READY state

Crooks & Zaharia CS162 © UCB Spring 2025 4.24

Using Fork

#include <stdlib.h>

#include <stdio.h> What do you think
#include <unistd.h> . 5
#include <sys/types.h> this code does:
int main(int argc, char *argv[]) {

pid t cpid, mypid;

pid t pid = getpid(); /* get current processes PID */

printf ("Parent pid: %d\n", pid);

if (cpid > 0) { /* Parent Process */
mypid = getpid();
printf (" [%d] parent of [%d]\n", mypid, cpid);

} else if (cpid == 0) { /* Child Process */
mypid = getpid();
printf (" [%d] child\n", mypid);

} else {
perror ("Fork failed");

Crooks & Zaharia CS162 © UCB Spring 2025 4.25

Forked Processes & Identical Twins

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

int main(int argc, char *argv([]) {

pid t cpid, mypid;

pid t pid = getpid(); /* get current
processes PID */

printf ("Parent pid: %d\n", pid);

if (cpid > 0) { /* Parent Process */
mypid = getpid();
printf (" [%d] parent of [%d]\n", mypid, cpid);

} else if (cpid == 0) { /* Child Process */
mypid = getpid();
printf (" [%d] child\n", mypid);

} else {

N Nw)
(@)
HH
o) Q
N Nw)
(@)
HH
o) Q

Parent Process Child Process
perror ("Fork failed");

Crooks & Zaharia CS162 © UCB Spring 2025 4.26

Forking: Where to restart?

#include <stdlib.h> .
#include <stdio.h> Where does the child

#include <unistd.h> process start executing?
#include <sys/types.h>

1ntlmaln(lrllt argc,l c.:har *argv([]) { 1) From int main?
pid t cpid, mypid;
pid t pid = getpid(); /* get current 2) If (Cpld > O)?
processes PID */
printf ("Parent pid: %d\n", pid);

if (cpid > 0) { /* Parent Process */

mypid = getpid();

printf ("[%d] parent of [%d]\n", mypid, cpid); Remember! Instruction
} else if (cpid == 0) { /* Child Process */

mypid = getpid(); pointer is p0|.nt|ng tO.the
printf ("[3d] child\n", mypid); same fork() instruction

} else {
perror ("Fork failed");

Crooks & Zaharia CS162 © UCB Spring 2025

4.27

Forked Process: Who am I?

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>

#include <sys/types.h> How do you determine

int main (int argc, char *argv[]) { whether you are the parent
pid_t cpid, mypid; or the child?
pid t pid = getpid(); /* get current

processes PID */
printf ("Parent pid: %d\n", pid);
cpid = fork():;
/* Parent Process */
mypid = getpid();

o

printf (" [%d] parent of [%d]\n", mypid, cpid); Fork() returns PID Of Chlld to

/* Child Process */ parent
mypid = getpid();
printf (" [%d] child\n", mypid);
} else {

If returns 0 then are child

perror ("Fork failed");

Crooks & Zaharia CS162 © UCB Spring 2025 4.28

Fork Ordering

int i,
pid t cpid = fork();
if (cpid > 0) {
for (1 = 0; 1 < 10; i++) {

printf ("Parent: %d\n", 1i);

// sleep(l);
}
} else if (cpid == 0) {
for (i = 0; 1 > -10; i--) {
printf ("Child: %d\n", 1i);
// sleep(l);
}

What does this print?

Would adding the calls to sleep() matter?

Remember! Full copy of address space. Once
forked, modify different memory locations.

Arbitrary interleaving of processes

Crooks & Zaharia CS162 © UCB Spring 2025 4.29

Review: The Life of a Fork() Syscall

1. Fork() is a System Call! Invoke int 0x80 instruction
2. CPU switches to and copies

3. CPU Jumps to (index 128).
Invokes system_call _handler()

4. Handler idenfies fork() using
(syscall number stored in %eax register)

5. do_fork() creates a new child PCB with duplicated memory context and *same™ EIP

6. Schedule either child or parent process

Crooks & Zaharia CS162 © UCB Spring 2025 4.30

The Battle Continues

A fork() in the road

Andrew Baumann Jonathan Appavoo

Microsoll Rescarch Boston Universiky
ABSTRACT
The recerved wisdom suggests that Unne's unusoal comin

nation of fork(} and exec() for process creation was an
inspired design In this paper, we argue that foerk was a clever
hack tor machines and programs of the 19705 that has long
outlived ibs usefulness and 1= now a liability, We catalog the
ways in which fork is a terrible abstraction for the mod-
ern programumer o use, describe how it compromises 05
implementations, and propose alkernatives.

As the designers and implementers of operating systems,
we should acknowledge that fork’s continued existence as
a first-class OF primitive holds back systems rescarch, and
deprecate it. As educatars, we should teach fork as a histar-
ical artifact, and not the lirst process crealion mechanism
students encounter,

ACM Reference Formal:

Ardrew Baoma rm,_]u mnl b .ﬁ.ppu-.-'un:;-. Orean Kril;-gl;-r_ amil 'TlrrII_I“‘I!f'
Boscoe 2009 A fork{) in the road. In Workshep on Hot Tapics in
Operating Systems (Mot '19), May 13-15 2009, Bertinore, Italv
AU New York, NY. USA, 9 pages. httpey/ydodorp10.1145/3317350,
3321435

1 INTRODUCTION

When the designers of Unix necded & mechanism to create
pracesses, thev added a peculiar new system call: fark{), Az
every undergraduabe now learns, lork creates a new process
identical o its parent (the caller of forlk], with the exceplion
of the svstem call’s return value, The Unis idiom of fork ()
followed by exec() to execute a different program in the
child 15 now well understood, but sbll stands in stark contrast

Orran Krieger Timothy Roscoe
Boston Universily ETH Furich

50 vears later, fork remains the defanlt process ereation
AP om POSEX: Atlidakis et al. [R] found 1304 Uhuntn pack-
ages (7.2% of the total) calling fork, compared to only 41
uses of the more modern posix_spawn (). Fork 15 used by
almost every Unix shell, major weh and datahase serversie.g.,
Apache, Postgre30L, and Oracle), Google Chrome, the Redis
key-value store, and cven Node js. The recetved wisdom ap-
pears to hold that fork is a pood design. Bvery O5 texthook
we reviewed [4, 7, 9, 35, 75, 78] covered fork in uncritical
ar positive terms, often noting its “simplicity” compared to
alternatives, Students today are taught that “the fark system
call is one of Unix's greal ideas” [46] and “there are lols of
ways o design APIs for process creation; however, the com-
hination of fork() and exec() are simple and immensely
powerful ... the Unix designers simply got it right” [7].

Chur goal 15 to set the recond strajght. Fork is an anachro
nism: a relic from another era that iz out of place in modern
svstems where it has a pernicicus and detrimental impact.
A% a community, our familarity with fork can blind us to its
faults {§4). Generally acknowledged problems with fork in
clude that it is not thread-safe, it is inefficient and unzcalahle,
and it introduces security coneerns, Bevond these limitations,
fork has lost its classic simplicity; it today impacts all the
ather operating system abstractions with which it was once
arthogonal Moreover. a fundamental challenge with fork is
that, since it conflates the process and the addeess space in
which it runs, fork is hostile to user-mode implementation
af O% functionality, breaking everything from buffered 10
Lo kernel-bypass networking, Perhaps most problematically,
fork doesn 't compose— cvery layer of a svstem from the kernel

to the smallest user-maode library must support it,
W s teala Fha baasse Faek aeaalie e T Senemlarmarta

Crooks & Zaharia CS162 © UCB Spring 2025

4.31

Process Management API

— terminate a process
— copy the current process
— wait for a process to finish
— send a signal (interrupt-like notification) to another process

— set handlers for signals

Crooks & Zaharia CS162 © UCB Spring 2025 4.32

Exec()

Call to Exec replaces running program!

aold = Zerki); Exec System Call handler will:

if (cpid > 0) { /* Parent Process */

| else if (cpid == 0) { /* Child Process */ 1. Replace the code and data segment

/* execv doesn’t return when it works. 2.5et EIP to pomt to start Of new
So, if we got here, it failed! */ program/reinitialize SP and FP

perror (Yexecv”) ;

exit (1) ; 3. Push arguments to program onto stack.
)

Crooks & Zaharia CS162 © UCB Spring 2025 4.33

Isn’t this wasteful?

OS copies entire memory of process, only to overwrite it with new
process

Can actually be made quite fast using intelligent
mechanisms

(Only physically copy memory when content is different)

Crooks & Zaharia CS162 © UCB Spring 2025 4.34

Fork/Exec Pattern

Crooks & Zaharia CS162 © UCB Spring 2025 4.35

Process Management API

— terminate a process
— copy the current process
— change the program being run by the current process
— send a signal (interrupt-like notification) to another process

— set handlers for signals

Crooks & Zaharia CS162 © UCB Spring 2025 4.36

Wait()

int status;
pid t tcpid;

cpid = fork();
if (cpid > 0) { /* Parent Process */
mypid = getpid();

o

printf (" [%d] parent of [%d]\n", mypid, cpid);

o

printf (" [%d] Parent says bye %d(%d)\n",
mypid, tcpid, status);

} else if (cpid == 0) { /* Child Process */
mypid = getpid();
printf (" [%d] child\n", mypid);
printf (" [%d] Child says bye %d \n",
mypid) ;

Wait blocks parent process until

processes exits

In what order will the (parent/child)

says bye sentences be outputted?

Question: how would parent wait

for all children to finish?

Crooks & Zaharia CS162 © UCB Spring 2025 4.37

Process Management API

— terminate a process
— copy the current process
— change the program being run by the current process
— wait for a process to finish
— send a signal (interrupt-like notification) to another process

— set handlers for signals

Crooks & Zaharia CS162 © UCB Spring 2025 4.38

What is a Signal?

A signal is a very short message that may be sent to a
process or a group of processes.

1) Make process aware that specific event has
occurred

2) Allow process to execute a signal handler function
when event has occurred

Example of a kernel-> user mode transition

Crooks & Zaharia CS162 © UCB Spring 2025

4.39

What is a Signal?

#include
#include
#include
#include

<stdlib.h>
<stdio.h>
<sys/types.h>

<unistd.h> Each signal has a default action. Can

#include <signal.h>
override default action with signal
void signal callback_handler (int signum) ({ handler
printf (“Caught signal!\n”);
exit(1l);

}

int main () {
struct sigaction sa;

Program jumps to signal handler
function.

sa.sa flags = 0;

sigemptyset (&sa.sa mask);

Control of the program resumes at the

sa.sa _handler = signal callback handler;
sigaction (SIGINT, &sa, NULL); previously interrupted instructions.
while (1) {}

Crooks & Zaharia CS162 © UCB Spring 2025 4.40

Signals in the Wild (in the Linux Kernel)

Ctr + C. Sends SIGINT signal. Default actual is to kill the program

Timer signal. Check every T seconds that a condition still holds

signal - overview of signals

crooks@laptop> man 7 signal
DESCRIPTION

Linux supports both POSIX reliable signals (hereinafter "standard signals") and POSIX real-time signals.

Signal dispositions
Each signal has a current disposition, which determines how the process behaves when it is delivered the signal.

The entries in the "Action" column of the table below specify the default disposition for each signal, as follows:

Term Default action is to terminate the process.

Ign Default action is to ignore the signal.

Core Default action is to terminate the process and dump core (see core(5)).

Stop Default action is to stop the process.

Cont Default action is to continue the process if it is currently stopped.

A process can change the disposition of a signal using sigaction(2) or signal(2). (The latter is less portable when establishing a signal handler; see signal(2) for details.)

Using these system calls, a process can elect one of the following behaviors to occur on delivery of the signal: perform the default action; ignore the signal; or catch the sig-
nal with a signal handler, a programmer-defined function that is automatically invoked when the signal is delivered.

Process Management API

ex1t — terminate a process
fork — copy the current process
exec — change the program being run by the current process
wait — wait for a process to finish
«1l1l —send a signal (interrupt-like notification) to another process

sigaction —set handlers for signals

Crooks & Zaharia CS162 © UCB Spring 2025

4.42

Goal 2: Input/Output in Linux

Crooks & Zaharia CS162 © UCB Spring 2025 4.43

Goal 2: Input/Output in Linux

UNIX offers the same IO interface for:

Printers [Mouse]

. J

All device Input/Output

()

Reading/Writing Files Disk

. J

Interprocess communication [Pipes] [Socket]

Everything is a file!

Crooks & Zaharia CS162 © UCB Spring 2025 4.44

Radical in 1974

The UNIX Time-
Sharing System

Dennis M. Ritchie and Ken Thompson
Bell Laboratories

UNIX i a general-purpose, multi-user, interactive
operating system for the Digital Equipment Corpora-
tion POP=11/40 and 11/45 computers. It offers a number
of features seldom found even in larger operating sys-
tems, including: (1) a hierarchical file system incorpo-
rating demountable volumes; (2) compatible file, device,
and inter-process 1/0; (3) the ability to initiate asynchro-
nous processes; (4) system command language select-
able on a per-user basis; and (5) over 100 subsystems
including a dozen languages. This paper discusses the
nature and implementation of the file system and of the
user command interface.

Key Words and Phrases: time-sharing, operating
system, file system, command language, Popr-11

CR Categories: 4.30, 4.32

1. Introduction

There have been three versions of UNIX. The earliest
version {circa 1969-70) ran on the Digital Equipment Cor-
poration PDP-T and -9 computers. The second version ran
on the unprotected PDP-11/20 computer. This paper
describes only the PDP-11/40 and /45 [1] system since it is
more modern and many of the differences between 1t and
older UNIX systems result from redesign of features found
to be deficient or lacking.

Since poP-11 UNIX became operational in February
1971, about 40 installations have been put into service; they
are generally smaller than the system described here, Most
of them are engaged in applications such as the preparation
and formaftting of patent applications and other texiual
material, the collection and processing of trouble data from
various switching machines within the Bell System. and
recording and checking telephone service orders. Our own
installation i1s used mainly for research in operating sys-
tems, languages, computer networks, and other topics in
computer science, and also for document preparation.

Perhaps the most important achievement of UNIX is to
demonstrate that a powerful operating system for interac-
tive use need not be expensive either in equipment or in
human effort: UNIX can run on hardware costing as little as
540,000, and less than two man years were spent on the
main system software. Yet UNIX contains a number of fea-
tures seldom offered even in much larger systems. It is
hoped, however, the users of UNIX will find that the most
important characteristics of the system are its simplicity,
elegance, and ease of use,

Besides the system proper, the major programs avail-
able under UNIX are: assembler, text editor based on QED
[2], linking loader, symbolic debugger, compiler for a lan-
guage resembling BCPL [3] with types and structures (C],
interpreter for a dialect of BASIC, text formatting program,

| [(TR - IR R | T ([[

Core tenants of UNIX/IO interface

Uniformity

Same set of system calls
Open, read, write, close

~

.
r

N\

Byte-Oriented

All devices, even block devices, are
access through byte arrays

~

4)

Open Before Use

Must explicitly open
file/device/channel

_/

g _/

(Kernel Buffered Reads/Writes \

Data is buffered at kernel to decouple
internals from application

. /

-

~

Explicit Close

Must explicitly close resource

.

Crooks & Zaharia C5162 © UCB Spring 2025

4.46

Introducing the File Descriptor

Number that uniquely identifies an open IO resource in the OS

It’s another index!
File descriptors index into
a per-process file descriptor table

Crooks & Zaharia CS162 © UCB Spring 2025 4.47

FDs in the Wild (well, in the Kernel)

In Linux struct fdtable defined
in
<include/kernel/fdtable.h>

enum procstate { UNUSED, EMBRYO, SLEEPING, RUNNABLE, RUNNI

// Per-process state
struct proc {

uint sz; // Size of process memory (bytes)

pde t* pgdir; // Page table

char *kstack; // Bottom of kernel stack for this process

enum procstate state; // Process state

int pid; // Process ID

struct proc *parent; // Parent process

struct trapframe *tf; // Trap frame for current syscall

struct context *context; // swtch() here to run process

void *chan; // If non-zero, sleeping on chan

Struct i1node =*cwd,; urrent directory

char name[16]; // Process name (debugging)

};

Xv6 Kernel (proc.h)

Crooks & Zaharia CS162 © UCB Spring 2025

Table of Open File Description

Each FD points to an
open file description in a system-wide table
of open files

File offset
File access mode (from open())
File status flags (from open())
Reference to physical location (inode — more later)
Number of times opened

(»InLMsttruct file definedin

<include/linux/fs.h>

_ J

Crooks & Zaharia CS162 © UCB Spring 2025

4.49

Manipulating FDs

Open/Create

#include <fcntl.h> All files explicitly opened via open or create.
kil els el o Return the lowest-numbered file descriptor not
#include <sys/types.h>

currently open for the process. Creates new
int open (Const char *filename, Open file description
int flags, [mode t mode]);

Close

int creat (const char

*filename, mode t mode) ; Closes a file descriptor, so that it no longer
refers to any file and may be reused

int close (int filedes);

Crooks & Zaharia CS162 © UCB Spring 2025 4.50

Manipulating FDs (2)

Read data from open file using file descriptor:

ssize t read (int filedes, void *buffer, size t maxsize)

Write data to open file using file descriptor

ssize t write (int filedes, const void *buffer, size t size)

Reposition file offset within kernel

off t lseek (int filedes, off t offset, int whence)

Crooks & Zaharia CS162 © UCB Spring 2025 4.51

Example

char bufferl1[100]; O: STDIN

char buffer2[100];
1: STDOUT

2: STDERR

Per-Process File
Descriptor Table

Global Open File
Description Table

Crooks & Zaharia CS162 © UCB Spring 2025 4.52

Example

char bufferl1[100];
char buffer2[100];

int fd = open(“foo.txt”,
O_RDONLY) ;

O: STDIN
1: STDOUT

2: STDERR

Per-Process File
Descriptor Table

Crooks & Zaharia CS162 © UCB Spring 2025

Global Open File
Description Table

4.53

Example

char bufferl1[100];
char buffer2[100];

int fd = open(“foo.txt”,
O_RDONLY) ;

read (fd, bufferl, 100);

O: STDIN
1: STDOUT

2: STDERR

Per-Process File
Descriptor Table

Global Open File
Description Table

Crooks & Zaharia CS162 © UCB Spring 2025 4.54

Example

char bufferl1[100];
char buffer2[100];

int fd = open(“foo.txt”,
O_RDONLY) ;

read (fd, bufferl, 100);
read (fd, buffer2, 100);

O: STDIN
1: STDOUT

2: STDERR

Per-Process File
Descriptor Table

Crooks & Zaharia CS162 © UCB Spring 2025

Global Open File
Description Table

4.55

Example

char bufferl1[100];
char buffer2[100];

int fd = open(“foo.txt”,
O_RDONLY) ;

read (fd, bufferl, 100);
read (fd, buffer2, 100);

int fd2 = open (“bar.txt”,
O_RDWR) ;

O: STDIN
1: STDOUT

2: STDERR

Per-Process File
Descriptor Table

Crooks & Zaharia CS162 © UCB Spring 2025

Global Open File
Description Table

4.56

Example

char bufferl1[100];
char buffer2[100];

int fd = open(“foo.txt”,
O_RDONLY) ;

read (fd, bufferl, 100);
read (fd, buffer2, 100);

int fd2 = open (“bar.txt”,
O_RDWR) ;

read (fd2, bufferl, 100);

O: STDIN
1: STDOUT

2: STDERR

Per-Process File
Descriptor Table

Crooks & Zaharia CS162 © UCB Spring 2025

Global Open File
Description Table

4.57

Example

char bufferl1[100];
char buffer2[100];

int fd = open(“foo.txt”,

O RDONLY) ;

read (fd, bufferl, 100);
read (fd, buffer2, 100);

int fd2 = open (“bar.txt”,

O_RDWR) ;
read (fd2, bufferl,
write (fd2, buffer?2,

100) ;
100) ;

O: STDIN
1: STDOUT

2: STDERR

Per-Process File
Descriptor Table

Type man 2 write in terminal. What do you think?

Crooks & Zaharia CS162 © UCB Spring 2025

Global Open File
Description Table

4.58

Example

char bufferl1[100];
char buffer2[100];

int fd = open(“foo.txt”,
O_RDONLY) ;

read (fd, bufferl, 100);
read (fd, buffer2, 100);

int fd2 = open (“bar.txt”,
O_RDWR) ;

read (fd2, bufferl, 100);
write (fd2, buffer2, 100);

O: STDIN
1: STDOUT

2: STDERR

Per-Process File
Descriptor Table

Crooks & Zaharia CS162 © UCB Spring 2025

Global Open File
Description Table

4.59

Example

char bufferl1[100];
char buffer2[100];

int fd = open(“foo.txt”,
O_RDONLY) ;

read (fd, bufferl, 100);
read (fd, buffer2, 100);

int fd2 = open (“bar.txt”,
O_RDWR) ;

read (fd2, bufferl, 100);
write (fd2, buffer2, 100);

close (f£d)

O: STDIN
1: STDOUT

2: STDERR

Per-Process File
Descriptor Table

Crooks & Zaharia CS162 © UCB Spring 2025

Global Open File
Description Table

4.60

Example

char bufferl1[100]; O: STDIN
char buffer2[100];

int fd = open(“foo.txt”,
O_RDONLY) ;

read (fd, bufferl, 100);
read (fd, buffer2, 100);

1: STDOUT

2: STDERR

int fd2 = open (“bar.txt”,
O_RDWR) ;

read (fd2, bufferl, 100);
write (fd2, buffer2, 100);

Per-Process File
Descriptor Table

Global Open File
Description Table

close (fd); close (fd2)

Crooks & Zaharia CS162 © UCB Spring 2025 4.61

	CS162�Operating Systems and�Systems Programming�Lecture 4��Systems Programming�Processes and Communication�
	Admistratrivia
	Admistratrivia
	We (still) don’t bite!
	Recall: Hardware must support
	Recall: Really Really Really Big Idea
	Recall: Interrupt Summary
	Recall: System Call/Exceptions
	Recall: User Stack/Kernel Stack (User Mode)
	Recall: User Stack/Kernel Stack (Kernel Mode)
	Three “Prongs” for the Class
	Goals for Today
	Goal 1: The Process API
	Simple is Beautiful
	Keeping it in the family
	Examples
	Children in the Wild (well, in the Kernel)
	Children in the Wild (well, in the Kernel)
	Process Management API
	Process Management API
	Process Management API
	A fork in the road
	Forking under the hood
	Using Fork
	Forked Processes & Identical Twins
	Forking: Where to restart?
	Forked Process: Who am I?
	Fork Ordering
	Review: The Life of a Fork() Syscall
	The Battle Continues
	Process Management API
	Exec()
	Isn’t this wasteful?
	Fork/Exec Pattern
	Process Management API
	Wait()
	Process Management API
	What is a Signal?
	What is a Signal?
	Signals in the Wild (in the Linux Kernel)
	Process Management API
	Goal 2: Input/Output in Linux
	Goal 2: Input/Output in Linux
	Radical in 1974!
	Core tenants of UNIX/IO interface
	Introducing the File Descriptor
	FDs in the Wild (well, in the Kernel)
	Table of Open File Description
	Manipulating FDs
	Manipulating FDs (2)
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example

