
CS162
Operating Systems and
Systems Programming

Lecture 3

Processes (Continued)

Professor Natacha Crooks & Matei Zaharia
https://cs162.org/

Slides based on prior slide decks from David Culler, Ion Stoica, John Kubiatowicz, Alison Norman and Lorenzo Alvisi

3.2Crooks & Zaharia CS162 © UCB Spring 2025

Reminder

Drop now (by Jan 31st) or forever hold your peace

(aka stay enrolled in CS162)

3.3Crooks & Zaharia CS162 © UCB Spring 2025

Recall: The Process

A executing program with restricted rights

Enforcing mechanism must not hinder functionality or hurt performance

Process

OS

Hardware

Process

OS

Hardware

Process

OS

Hardware

3.4Crooks & Zaharia CS162 © UCB Spring 2025

Recall: Operating System Kernel

Lowest level of OS running on system.
Kernel is trusted with full access to all hardware capabilities

All other software (OS or applications) is considered untrusted

Hardware

Operating System Kernel

Rest of OS

Applications
Untrusted

Trusted

Untrusted

3.5Crooks & Zaharia CS162 © UCB Spring 2025

Recall: Dual Mode Operation

Use a bit to enable two modes of execution

In User Mode

Processor checks each
instruction before executing it

Executes a limited (safe) set of
instructions

In Kernel Mode

OS executes with protection
checks off

Can execute any instructions

3.6Crooks & Zaharia CS162 © UCB Spring 2025

Recall: Hardware must support

1) Privileged Instructions
Unsafe instructions cannot be

executed in user mode

2) Memory Isolation
Memory accesses outside a

process’s address space prohibited

3) Interrupts
Ensure kernel can regain control

from running process

4) Safe Transfers
Correctly transfer control from user-

mode to kernel-mode and back

3.7Crooks & Zaharia CS162 © UCB Spring 2025

Goals for today

• What hardware support is necessary to enable protection?

• 61C Review: The Stack?

• How to switch from user mode to kernel mode and back?

3.8Crooks & Zaharia CS162 © UCB Spring 2025

Hardware must support

1) Privileged Instructions
Unsafe instructions cannot be

executed in user mode

2) Memory Isolation
Memory accesses outside a

process’s address space prohibited

3) Interrupts
Ensure kernel can regain control

from running process

4) Safe Transfers
Correctly transfer control from user-

mode to kernel-mode and back

3.9Crooks & Zaharia CS162 © UCB Spring 2025

Req 4/4: Safe Control Transfer

How do safely/correctly transition from executing user process to executing the
kernel?

1) System Calls 3) Interrupts2) Exceptions

Asynchronous

Can be maskable or non-
maskable

Synchronous Events
(trapping)

3.10Crooks & Zaharia CS162 © UCB Spring 2025

Safe Control Transfer: System Calls

User program requests OS service
Transfers to kernel at well-defined location

Synchronous/non-maskable

How many system calls in Linux 3.0 ?
a) 15 b) 336 c) 1021 d) 21121

https://man7.org/linux/man-pages/man2/syscalls.2.html

Read input/write to screen, to files, create new processes, send network packets, get time, etc.

3.11Crooks & Zaharia CS162 © UCB Spring 2025

System Calls are the “Narrow Waist”

Compilers

Web Servers

Web Browsers

Databases

Email

Word Processing

Portable OS Library

System Call
Interface

Portable OS Kernel

Platform support, Device Drivers

x86 ARMPowerPC

Ethernet (1Gbs/10Gbs) 802.11 a/g/n/ac SCSI ThunderboltGraphics

PCI
Hardware

Software

System

User
OS

Application / Service

Simple and powerful interface allows separation of concern
 Eases innovation in user space and HW

3.12Crooks & Zaharia CS162 © UCB Spring 2025

System Calls in the Wild (In Linux)

3.13Crooks & Zaharia CS162 © UCB Spring 2025

Safe Control Transfer: Exceptions

Any unexpected condition caused by user program behaviour

Stop executing process and enter kernel at specific exception handler

Synchronous and non-maskable

Process missteps (division by zero, writing read-only memory)
Attempts to execute a privileged instruction in user mode

Debugger breakpoints!

3.14Crooks & Zaharia CS162 © UCB Spring 2025

Exceptions in the Wild (In Linux)

3.15Crooks & Zaharia CS162 © UCB Spring 2025

Safe Control Transfer: Interrupts

Asynchronous signal to the processor that some external event has occurred and may
require attention

When process interrupt, stop current process and enter kernel at designated interrupt
handler

Timer Interrupts, IO Interrupts, Interprocessor Interrupts

3.16Crooks & Zaharia CS162 © UCB Spring 2025

Safe Control Transfer: Kernel->User

New Process Creation
Kernel instantiates datastructures, sets registers, switches to user mode

Resume after an exception/interrupt/syscall
Resume execution by restoring PC, registers, and unsetting mode

Switching to a different process
Save old process state. Load new process state (restore PC, registers). Unset mode.

3.17Crooks & Zaharia CS162 © UCB Spring 2025

Address Space Of Process

Goal 2: The Stack is Back (Review)

Address Space Of Process

Code

Data

Stack

Heap

0xFFFFFFFF

0x00000000

Stack Contains temporary data
such as method/function
parameters, return address and
local variables.

Heap Dynamically allocated
memory to a process during its
run time.

int foo() {
 int a;
 Foo* foo= malloc(sizeof(int));

}

3.18Crooks & Zaharia CS162 © UCB Spring 2025

Stack Terminology (Review)

Stack Frame
All the information on the stack pertaining to a function call

Frame Pointer (%ebp)
Contain base address of function's frame.

Stack Pointer (%esp)
 Points to the next item on the stack.

Instruction Pointer (%eip)
Indicates the current address of the program being executed

3.19Crooks & Zaharia CS162 © UCB Spring 2025

The Call Stack (Review)

int add(int a, int b) {
 int result = a+b;
 return result;
}

void foo() {
 int x = add(5,10);
}

0xFFFFFFFF

0x00000000

Frame for foo()

Frame for add()

3.20Crooks & Zaharia CS162 © UCB Spring 2025

The Call Stack (Review)

int add(int a, int b) {
 int result = a+b;
 return result;
}

void foo() {
 int x = add(5,10);
}

crooks@laptop> gcc -S -m32 add.c

add:
 pushl %ebp
 movl %esp, %ebp
 subl $4, %esp
 movl 8(%ebp), %edx
 movl 12(%ebp), %eax
 addl %edx, %eax
 movl %eax, -4(%ebp)
 movl -4(%ebp), %eax
 leave/ret
foo:
 pushl %ebp
 movl %esp, %ebp
 pushl $10
 pushl $5
 call add
 movl %eax, -4(%ebp)
 leave/ret

3.21Crooks & Zaharia CS162 © UCB Spring 2025

The Call Stack (Review)

void foo() {
 int x = add(5,10);
}

foo:
 pushl %ebp
 movl %esp, %ebp

Save old frame pointer.

Set current frame pointer to
stack pointer

Frame pointer is base of stack
frame

ebp
Stack Pointer (esp)

3.22Crooks & Zaharia CS162 © UCB Spring 2025

The Call Stack (Review)

void foo() {
 int x = add(5,10);
}

foo:
 pushl %ebp
 movl %esp, %ebp
 subl $4, %esp
 pushl $10
 pushl $5

Load Function Parameters On
Stack

(reverse order)

ebp
Stack Pointer (esp)

Stack Pointer (esp)
10

5

Create space for x

X=?

Stack Pointer (esp)

3.23Crooks & Zaharia CS162 © UCB Spring 2025

The Call Stack (Review)

void foo() {
 int x = add(5,10);
}

foo:
 pushl %ebp
 movl %esp, %ebp
 subl $4, %esp
 pushl $10
 pushl $5
 call add

ebp

10

5

Call instruction pushes EIP to
stack and jumps to add location

X=?

EIP

3.24Crooks & Zaharia CS162 © UCB Spring 2025

The Call Stack (Review)

int add(int a, int b) {
 int result = a+b;
 return result;
} ebp

Stack Pointer (esp)

5

EIP

X=?

10

1) Save frame pointer and set to
stack pointer

add:
 pushl %ebp
 movl %esp, %ebp
 subl $4, %esp

Stack Pointer (esp)

ebp

3.25Crooks & Zaharia CS162 © UCB Spring 2025

The Call Stack (Review)

int add(int a, int b) {
 int result = a+b;
 return result;
} ebp

5

EIP

X=?

10

add:
 pushl %ebp
 movl %esp, %ebp
 subl $4, %esp
 movl 8(%ebp), %edx
 movl 12(%ebp), %eax
 addl %edx, %eax

Stack Pointer (esp)

8(%ebp)

12 (%ebp)

ebp

3.26Crooks & Zaharia CS162 © UCB Spring 2025

The Call Stack (Review)

int add(int a, int b) {
 int result = a+b;
 return result;
} ebp

5

EIP

X=?

10

add:
 pushl %ebp
 movl %esp, %ebp
 subl $4, %esp
 movl 8(%ebp), %edx
 movl 12(%ebp), %eax
 addl %edx, %eax
 movl %eax, -4(%ebp)

Local Variables are stored in the
stack frame

result

ebp

3.27Crooks & Zaharia CS162 © UCB Spring 2025

The Call Stack (Review)

int add(int a, int b) {
 int result = a+b;
 return result;
} ebp

5

EIP

X=?

10

add:
 pushl %ebp
 movl %esp, %ebp
 subl $4, %esp
 movl 8(%ebp), %edx
 movl 12(%ebp), %eax
 addl %edx, %eax
 movl %eax, -4(%ebp)
 movl -4(%ebp), %eax

Move return value to eax register

ebp

result

3.28Crooks & Zaharia CS162 © UCB Spring 2025

The Call Stack (Review)

int add(int a, int b) {
 int result = a+b;
 return result;
} ebp

5

EIP

X=?

10

add:
 pushl %ebp
 movl %esp, %ebp
 subl $4, %esp
 movl 8(%ebp), %edx
 movl 12(%ebp), %eax
 addl %edx, %eax
 movl %eax, -4(%ebp)
 movl -4(%ebp), %eax
 leave
 ret

Leave instruction restores caller’s
frame (pops local variables and

ebp)

Return instruction pops EIP and
restores control to EIP

result

ebp

3.29Crooks & Zaharia CS162 © UCB Spring 2025

The Call Stack (Review)

void foo() {
 int x = add(5,10);
}

ebp

X=?

10

5

foo:
 pushl %ebp
 movl %esp, %ebp
 subl $4, %esp
 pushl $10
 pushl $5
 call add

Stack Pointer (esp)

Pop function parameters

3.30Crooks & Zaharia CS162 © UCB Spring 2025

The Call Stack (Review)

void foo() {
 int x = add(5,10);
}

ebp

foo:
 pushl %ebp
 movl %esp, %ebp
 subl $4, %esp
 pushl $10
 pushl $5
 call add
 movl %eax, -4(%ebp)

Stack Pointer (esp)x = ?x = 15

3.31Crooks & Zaharia CS162 © UCB Spring 2025

Really Really Really Big Idea

The state of a program’s execution is succinctly and completely represented by CPU
register state

EIP, ESP, EBP, Eflags/PSW

3.32Crooks & Zaharia CS162 © UCB Spring 2025

Goal 2: User -> Kernel Mode

3.33Crooks & Zaharia CS162 © UCB Spring 2025

Goal 3: User -> Kernel Mode

Key Requirement:
Malicious user program (or IO device) cannot corrupt the kernel.

Interrupts, exceptions or system calls handled similarly
 => fewer code paths, fewer bugs.

1) Limited Entry
Cannot jump to arbitrary

code in kernel

2) Atomic Switch
Switch from process stack

to kernel stack

3) Transparent Execution
Restore prior state to

continue program

3.34Crooks & Zaharia CS162 © UCB Spring 2025

Interrupt Handling Roadmap

1) Processor detects interrupt

2) Suspend user program and switch to kernel stack

3) Identify interrupt type and invoke appropriate interrupt handler

4) Restore user program

3.35Crooks & Zaharia CS162 © UCB Spring 2025

Don’t (Hardware) Interrupt Me

OS is cool
int add(int a, int b) {
 int result = a+b;
 return result;
}

What happens when I type “OS is cool” on my keyboard while the Add program is
running?

3.36Crooks & Zaharia CS162 © UCB Spring 2025

1) Interrupt Detection (Hardware)

OS is cool

PIC

Device sends electric signal interrupt request
(IRQ) over interrupt request line to
programmable interrupt controller (PIC)

3.37Crooks & Zaharia CS162 © UCB Spring 2025

1) Interrupt Detection (Hardware)

OS is cool

PIC

Processor

APIC converts IRQ to a vector number and
sends signal to processor

Processor detects interruptINTR

3.38Crooks & Zaharia CS162 © UCB Spring 2025

IRQs

3.39Crooks & Zaharia CS162 © UCB Spring 2025

Sidenote: PICS and APICs

3.40Crooks & Zaharia CS162 © UCB Spring 2025

2) Save Recovery State (Hardware)

int add(int a, int b) {
 int result = a+b;
 return result;
}

Which registers need to be saved by hardware
to restore program?

Stack Pointer (esp)

Program Counter (eip)

Execution Flags / Program Status Word (Eflags)

Save register values (recovery state) for process recovery

3.41Crooks & Zaharia CS162 © UCB Spring 2025

3) Switching (atomically) to Kernel Stack
int add(int a, int b) {
 int result = a+b;
 return result;
}

ebp

5

EIP

X=?

10

result

ebp

User Stack

Switches stack pointer to base of kernel stack

Pushes recovery state onto the new stack
(+ optional error code)

Stack Pointer

PSW

Instruction Pointer

Question 1:
Why did hardware need to save

registers before switching to kernel
stack?

Question 2:
Why do we need a separate kernel

stack?

Error Code

Must overwrite EIP/SP when
switching!

Integrity and privacy concerns

3.42Crooks & Zaharia CS162 © UCB Spring 2025

A Tale of Two Stacks

enum procstate { UNUSED, EMBRYO, SLEEPING, RUNNABLE, RUNNING, ZOMBIE };

// Per-process state
struct proc {
 uint sz; // Size of process memory (bytes)
 pde_t* pgdir; // Page table
 char *kstack; // Bottom of kernel stack for this process
 enum procstate state; // Process state
 int pid; // Process ID
 struct proc *parent; // Parent process
 struct trapframe *tf; // Trap frame for current syscall
 struct context *context; // swtch() here to run process
 void *chan; // If non-zero, sleeping on chan
 int killed; // If non-zero, have been killed
 struct file *ofile[NOFILE]; // Open files
 struct inode *cwd; // Current directory
 char name[16]; // Process name (debugging)
};

Xv6 Kernel (proc.h)

3.43Crooks & Zaharia CS162 © UCB Spring 2025

4) Invoke Interrupt Handler (Hardware)

Interrupt vector is an index
into Interrupt Vector Table

(or interrupt descriptor table).

Index contains appropriate
 Interrupt Handler Routine

Control Unit sets EIP to handler Stack Pointer

PSW

Instruction Pointer

Error CodeHandler saves all remaining user registers into stack and
implements necessary logic

(Transition software)

Eax

Ebx

…

32

127

33

…

keyboard_handler

floppy_handler

disk_handler

rtc_handler

IDT Table in Linux

Kernel Stack

3.44Crooks & Zaharia CS162 © UCB Spring 2025

5) Return to Program

Pop all user registers from kernel stack (restore
register state)

Invoke iret instruction to pop saved EIP, EFLAGS,
and SP registers from kernel’s exception stack to

relevant registers

Return to user mode

Stack Pointer

PSW

Instruction Pointer

Error Code

Eax

Ebx

…

ebp

5
EIP

X=?
10

result
ebp

Kernel Stack
User Stack

3.45Crooks & Zaharia CS162 © UCB Spring 2025

Concurrent Interrupts

What happens if an interrupt happens while processing an interrupt?

Hardware provides instruction to temporarily defer delivery of interrupt (disable
interrupt), and re-enable them when safe (enable interrupt)

Periods during which interrupts are disabled should be very short!

Interrupts are disabled when an interrupt handler is running

3.46Crooks & Zaharia CS162 © UCB Spring 2025

Interrupt Summary

1) Device sends signal to APIC

2) Processor detects interrupt

3) Save Recovery State and switch to Kernel Stack

4) Jump to interrupt handler table at appropriate vector. Invoke interrupt handler

5) Restore user program

3.47Crooks & Zaharia CS162 © UCB Spring 2025

What about syscalls?

System calls are user functions that request services from the OS. Described as
function call, with a name, parameters and return value.

Good news!
Syscalls are handled (almost) identically to interrupts.

3.48Crooks & Zaharia CS162 © UCB Spring 2025

What about syscalls?

Syscalls issue a “trap” instruction (int 0x80)
Generated interrupt will trigger exception vector

128!

32

127

33

…

keyboard_handler

floppy_handler

disk_handler

rtc_handler

128 syscall_handler

How does handler know which syscall to execute?
System Call number fed in to %eax register.

System call number entry into system call dispatch table,

What about parameters and return values?
Propagated through registers.

Warning: Parameters must be carefully checked.

3.49Crooks & Zaharia CS162 © UCB Spring 2025

What about syscalls?

Four differences:

1) Extra-layer of indirection (system call table)

2) Leverage registers for parameters/values

3) When executing iret, increment EIP by one to go to next instruction

4) Usually, interrupts not disabled

3.50Crooks & Zaharia CS162 © UCB Spring 2025

What about exceptions?

It’s the same!

3.51Crooks & Zaharia CS162 © UCB Spring 2025

The magic of the IVT

Single, well-defined entry point in the
kernel helps with security

3.52Crooks & Zaharia CS162 © UCB Spring 2025

Tension between performance and simplicity

Accessing IDT can be slow if not in cache.
Syscalls very common, can we make them cheaper?

Allocate a special register (machine specific register) to directly store address of
system call dispatch table

Store register call in the rax
register

But backwards compatibility …

3.53Crooks & Zaharia CS162 © UCB Spring 2025

Goals for today

• (Continued) Hardware support for dual
mode

• 61C Review: The Stack

• How to switch from user mode to
kernel mode and back?

Privileged Instructions, Memory Isolation, Timer
Interrupts, Safe Context Switching.

Switch to specified location in kernel & atomic.

Interrupts, Syscalls, Exceptions handled
identically. Use of the interrupt vector table

Stack Pointer, Frame Pointer, Program Counter

	CS162�Operating Systems and�Systems Programming�Lecture 3��Processes (Continued)��
	Reminder
	Recall: The Process
	Recall: Operating System Kernel
	Recall: Dual Mode Operation
	Recall: Hardware must support
	Goals for today
	Hardware must support
	Req 4/4: Safe Control Transfer
	Safe Control Transfer: System Calls
	System Calls are the “Narrow Waist”
	System Calls in the Wild (In Linux)
	Safe Control Transfer: Exceptions
	Exceptions in the Wild (In Linux)
	Safe Control Transfer: Interrupts
	Safe Control Transfer: Kernel->User
	Goal 2: The Stack is Back (Review)
	Stack Terminology (Review)
	The Call Stack (Review)
	The Call Stack (Review)
	The Call Stack (Review)
	The Call Stack (Review)
	The Call Stack (Review)
	The Call Stack (Review)
	The Call Stack (Review)
	The Call Stack (Review)
	The Call Stack (Review)
	The Call Stack (Review)
	The Call Stack (Review)
	The Call Stack (Review)
	Really Really Really Big Idea
	Goal 2: User -> Kernel Mode
	Goal 3: User -> Kernel Mode
	Interrupt Handling Roadmap
	Don’t (Hardware) Interrupt Me
	1) Interrupt Detection (Hardware)
	1) Interrupt Detection (Hardware)
	IRQs
	Sidenote: PICS and APICs
	2) Save Recovery State (Hardware)
	3) Switching (atomically) to Kernel Stack
	A Tale of Two Stacks
	4) Invoke Interrupt Handler (Hardware)
	5) Return to Program
	Concurrent Interrupts
	Interrupt Summary
	What about syscalls?
	What about syscalls?
	What about syscalls?
	What about exceptions?
	The magic of the IVT
	Tension between performance and simplicity
	Goals for today

