
26.1Crooks & Zaharia CS162 © UCB Spring 2025

Please fill this in!

course-evaluations.berkeley.edu

If 80% fill it in, 1 EC point on MT3 post-curve

How a Berkeley student
looks pre-162 And how they look post-162

CS162
Operating Systems and
Systems Programming

Lecture 26

Coordination - Paxos

Professor Natacha Crooks
https://cs162.org/

Slides based on prior slide decks from David Culler, Ion Stoica, John Kubiatowicz, Alison Norman, Indy Gupta and Lorenzo Alvisi

26.3Crooks & Zaharia CS162 © UCB Spring 2025

Recall: General’s Paradox

If the network is unreliable, it is impossible to guarantee two entities do
something simultaneously

If nodes behave maliciously, impossible to get eventual agreement if there
are less than 3f+1 parties present (of which f can misbehave)

Entire textbook on impossibility results in distributed computing …

26.4Crooks & Zaharia CS162 © UCB Spring 2025

Recall: Eventual Agreement: Two-Phase Commit

Two or more machines agree to do something, or not do it,
atomically

No constraints on time, just that it will eventually happen!

Used in most modern distributed systems! Representative of other
coordination protocols

Presenter Notes
Presentation Notes
Emphasise why 2PC

26.5Crooks & Zaharia CS162 © UCB Spring 2025

Recall: 2PC Summary

Why is 2PC not subject to the General’s paradox?
– Because 2PC is about all nodes eventually coming to the same decision –

not necessarily at the same time!
– Allowing us to reboot and continue allows time for collecting and collating

decisions

Biggest downside of 2PC: blocking
– A failed node can prevent the system from making progress
– Still one of the most popular coordination algorithms today

26.6Crooks & Zaharia CS162 © UCB Spring 2025

Failures

What types of failures can arise in distributed system?

Crash

Omission

Arbitrary Failures (Byzantine)

26.7Crooks & Zaharia CS162 © UCB Spring 2025

Failure Model as a Contract

A system with N replicas will

1) Remain safe (produce a correct output)
2) Remain live (eventually produce correct output)

As long as there are no more than F failures.

What happens when there are more than f failures?
=> All bets are off.

26.8Crooks & Zaharia CS162 © UCB Spring 2025

Solving Consensus

How can we get a group of machines to agree on a single value when

1) There can be concurrent values proposed

2) Machines can fail!

2PC blocks in the presence of failures and requires explicit coordinator. How can
we solve consensus in the presence of f failures?

26.9Crooks & Zaharia CS162 © UCB Spring 2025

Consensus

Given a set of processors, each with an initial value:

Termination: All non-faulty processes eventually decide on a value

Agreement: All processes that decide do so on the same value

Validity: Value decided must have proposed by some process

26.10Crooks & Zaharia CS162 © UCB Spring 2025

Consensus

Consensus is impossible in an asynchronous system!

Realisation 1:
Every *fun* thing in distributed systems is impossible

Realisation 2:
We build these systems anyways.

26.11Crooks & Zaharia CS162 © UCB Spring 2025

Paxos

Most popular consensus algorithm but doesn’t (quite) solve consensus

Provides safety and eventual liveness

Safety: Consensus is not violated

Eventual Liveness: If things go well sometime in the future (messages, failures, etc.),
there is a good chance consensus will be reached. But there is no guarantee.

Used (in some form) in most major distributed systems

Google’s Chubby, Yahoo’s Zookeeper, MultiPaxos in Spanner, Raft in Etcd/TiKV.

26.12Crooks & Zaharia CS162 © UCB Spring 2025

System Model

2f + 1 nodes, f of which may fail.

No upper-bound in message delivery *but* assume messages eventually arrive

No “special” coordinator node. Everyone is equal

Propose values (data/numbers, etc)

1 2 3 4 5

26.13Crooks & Zaharia CS162 © UCB Spring 2025

Greek Island Politics

the problem of governing with a part-time parliament bears a
remarkable correspondence to the problem faced by today’s fault-

tolerant distributed systems, where legislators correspond to processes
and leaving the Chamber corresponds to failing. The Paxons’ solution

may therefore be of some interest to computer scientists. I present here
a short history of the Paxos Parliament’s protocol, followed by an even

shorter discussion of its relevance for distributed systems
No one really understood this version, so there’s been many “translations” for

Computer Scientists since

Paxos Made Simple
Paxos Made Moderately Complex

An Engineering Perspective on Paxos
Viewstamp Replication

Raft

26.14Crooks & Zaharia CS162 © UCB Spring 2025

Rounds

Paxos has rounds;
Each round has a unique ballot id

Rounds are asynchronous

Time synchronization not required
 (but preferred for liveness)

If you’re in round j and hear a message from round j+1,
abort everything and move over to round j+1

26.15Crooks & Zaharia CS162 © UCB Spring 2025

Three Phases Per Round

Each round itself broken into phases
(which are also asynchronous)

Phase 1: A leader is elected
(Election)

Phase 2: Leader proposes a value, processes ack (Bill)

Phase 3: Leader multicasts final value
 (Law)

26.16Crooks & Zaharia CS162 © UCB Spring 2025

Phase 1 – Election

Potential leader (Proposer) chooses a ballot id.

Ballot id must be unique per proposer

Ballot id must be higher than any ballot id seen anything so far

26.17Crooks & Zaharia CS162 © UCB Spring 2025

Phase 1 – Election (Version 1)

Proposer sends PREPARE(ballot_id) to all participants.

If participant has already received a higher ballot id
(b > ballot_id), do nothing.

Else:
1) Store b=ballot_id on disk

2) Send an PROMISE(ballot_id) to proposer.

Have I already agreed to ignore proposals with this proposal number?

Presenter Notes
Presentation Notes
Proposal only includes ballot id!!!! No value �

26.18Crooks & Zaharia CS162 © UCB Spring 2025

Phase 1 – Election (Version 1)

If majority (i.e., quorum) respond PROMISE(ballot_id) then, proposer is
the leader

Why a majority?

In what cases may the leader not receive a majority of votes?

Invariant: once have established a leader for ballot_id, no leader can be
elected for a ballot smaller than ballot_id

26.19Crooks & Zaharia CS162 © UCB Spring 2025

Phase 2 – Proposal (Bill) (Version 1)

Leader sends proposed value v by sending
PROPOSE(ballot_id,v) to all

If participant has already received a higher ballot id
 (b > ballot_id), do nothing.

Else:
1) Store b=ballot_id on disk

2) Send an ACCEPT(ballot_id, v) to proposer.

Have I already agreed to ignore proposals with this proposal number?

26.20Crooks & Zaharia CS162 © UCB Spring 2025

Phase 3 – Decision (Law) (Version 1)

If leader hears a majority of ACCEPT(ballot_id, v),

It lets everyone know of the decision.

Sends a COMMIT(ballot_id, v)

Participants can now execute v.

26.21Crooks & Zaharia CS162 © UCB Spring 2025

Easy Example

Prepare(1)

Promise(1)

26.22Crooks & Zaharia CS162 © UCB Spring 2025

Easy Example

Prepare(1)

Promise(1)

Propose(1,
“soccer”)

Accept(1)

26.23Crooks & Zaharia CS162 © UCB Spring 2025

Easy Example

Prepare(1)

Promise(1)

Propose(1,
“soccer”)

Accept(1)

Commit(1,
“soccer”)

26.24Crooks & Zaharia CS162 © UCB Spring 2025

Moderately Easy Example

Prepare(1) Promise(1)

26.25Crooks & Zaharia CS162 © UCB Spring 2025

Moderately Easy Example

Prepare(1) Promise(1)

Prepare(2)

Promise(2)

26.26Crooks & Zaharia CS162 © UCB Spring 2025

Moderately Easy Example

Prepare(1) Promise(1)

Prepare(2)

Propose(1,
“soccer”)

Promise(2)

1<2

26.27Crooks & Zaharia CS162 © UCB Spring 2025

Moderately Easy Example

Prepare(1) Promise(1)

Prepare(2)

Propose(1,
“soccer”)

Promise(2)

1<2

Propose(2,
“football”)

26.28Crooks & Zaharia CS162 © UCB Spring 2025

Moderately Easy Example

Prepare(1) Promise(1)

Prepare(2)

Propose(1,
“soccer”)

Promise(2)

1<2

Propose(2,
“football”)

Accept(2,
“football”)

26.29Crooks & Zaharia CS162 © UCB Spring 2025

Moderately Easy Example: Quorums

Prepare(1)

Prepare(2)

Promise(2)

Promise(1)

26.30Crooks & Zaharia CS162 © UCB Spring 2025

Moderately Easy Example: Quorums

Prepare(1) Promise(1)

Prepare(2)

Promise(2)

3 participants have said
PROMISE to ballot 2Promise(1)

26.31Crooks & Zaharia CS162 © UCB Spring 2025

Moderately Easy Example: Quorums

Prepare(1) Promise(1)

Prepare(2)

Propose(1,
“soccer”)

Promise(2)

1<2?

26.32Crooks & Zaharia CS162 © UCB Spring 2025

Moderately Easy Example: Quorums

Prepare(1) Promise(1)

Prepare(2)

Propose(1,
“soccer”)

Promise(2)

1<2

Accept(1, “soccer”)
x2

26.33Crooks & Zaharia CS162 © UCB Spring 2025

Moderately Easy Example: Quorums

Prepare(1) Promise(1)

Prepare(2)

Propose(1,
“soccer”)

Promise(2)

1<2?

Accept(2,
“football”) x3

Propose(2,
“football”)

Accept(1,
“soccer”)
x2

Will never receive a majority of Accept(1,soccer) if a majority of nodes have
already promised Promised(2)

26.34Crooks & Zaharia CS162 © UCB Spring 2025

Are we done?

Given a set of processors, each with an initial value:

Termination: All non-faulty processes eventually decide on a value

Agreement: All processes that decide do so on the same value

Validity: Value decided must have proposed by some process

26.35Crooks & Zaharia CS162 © UCB Spring 2025

Harder Example

Prepare(1)

Prepare(2)

Promise(1)

26.36Crooks & Zaharia CS162 © UCB Spring 2025

Harder Example

Prepare(1)

Prepare(2)

Propose(1,
“soccer”)

Promise(1)

26.37Crooks & Zaharia CS162 © UCB Spring 2025

Harder Example

Prepare(1)

Prepare(2)

Propose(1,
“soccer”)

Accept(1,
“soccer”)Promise(1)

26.38Crooks & Zaharia CS162 © UCB Spring 2025

Harder Example

Prepare(1)

Prepare(2)

Propose(1,
“soccer”)

Commit(1,
“soccer”)

Promise(1)
Accept(1,
“soccer”)

26.39Crooks & Zaharia CS162 © UCB Spring 2025

Harder Example

Prepare(1)

Prepare(2)

Propose(1,
“soccer”)

Commit(1,
“soccer”)

Promise(2)Promise(1)
Accept(1,
“soccer”)

26.40Crooks & Zaharia CS162 © UCB Spring 2025

Harder Example

Prepare(1)

Prepare(2)

Propose(1,
“soccer”)

Commit(1,
“soccer”)

Promise(1)
Accept(1,
“soccer”)

Promise(2)

Propose(2,
“football”)

26.41Crooks & Zaharia CS162 © UCB Spring 2025

Harder Example

Prepare(1)

Prepare(2)

Propose(1,
“soccer”)

Commit(1,
“soccer”)

Promise(1)
Accept(1,
“soccer”)

Promise(2)

Propose(2,
“football”)

Accept(2,
“football”)

26.42Crooks & Zaharia CS162 © UCB Spring 2025

Harder Example

Prepare(1)

Prepare(2)

Propose(1,
“soccer”)

Commit(1,
“soccer”)

Promise(1)
Accept(1,
“soccer”)

Promise(2)

Propose(2,
“football”)

Accept(2,
“football”)

Commit(1,
“soccer”)

Commit(2,
“football”)

26.43Crooks & Zaharia CS162 © UCB Spring 2025

We don’t have consensus!

Prepare(1)

Prepare(2)

Propose(1,
“soccer”)

Commit(1,
“soccer”)

Promise(1)
Accept(1,
“soccer”)

Promise(2)

Propose(2,
“football”)

Accept(2,
“football”)

Commit(1,
“soccer”)

Commit(2,
“football”)

Agreement:

All processes that decide do
so on the same value

26.44Crooks & Zaharia CS162 © UCB Spring 2025

What went wrong?

Prepare(1)

Prepare(2)

Propose(1,
“soccer”)

Commit(1,
“soccer”)

Promise(1)
Accept(1,
“soccer”)

Promise(2)

Propose(2,
“football”)

Accept(2,
“football”)

Commit(1,
“soccer”)

Commit(2,
“football”)

Consensus happens here! But participants don’t know it yet

26.45Crooks & Zaharia CS162 © UCB Spring 2025

Phase 1 – Election (Version 1)

Proposer sends PREPARE(ballot_id) to all participants.

If participant has already received a higher ballot id
(b > ballot_id), do nothing.

Else:
1) Store b=ballot_id on disk

2) Send an PROMISE(ballot_id) to proposer.

Have I already agreed to ignore proposals with this proposal number?

Presenter Notes
Presentation Notes
Proposal only includes ballot id!!!! No value �

26.46Crooks & Zaharia CS162 © UCB Spring 2025

Phase 1 – Election (Version 2)

Proposer sends PREPARE(ballot_id) to all participants.

If highest ballot id received so far, send PROMISE(ballot_id)

If already sent an ACCEPT(old_ballot,value), send PROMISE(ballot_id, (old_ballot,value))

Otherwise do nothing

(Log Decision)

Have I already agreed to ignore proposals < ballot_id
Have I already potentially decided a value?

Presenter Notes
Presentation Notes
Proposal only includes ballot id!!!! No value �

26.47Crooks & Zaharia CS162 © UCB Spring 2025

Phase 1 – Election (Version 2)

If majority (i.e., quorum) respond PROMISE(ballot_id) then, proposer is
the leader.

Can propose any value it wants!

If majority (i.e., quorum) respond PROMISE(ballot_id, (old_ballot, v))

Then, select v with highest “old_ballot” value. Must propose v

Leader not free to choose value as consensus may already have
been reached!

26.48Crooks & Zaharia CS162 © UCB Spring 2025

Phase 2 – Proposal (Bill) (Version 1)

Leader sends proposed value v by sending
PROPOSE(ballot_id,v) to all

If participant has already received a higher ballot id
 (b > ballot_id), do nothing.

Else:
1) Store b=ballot_id on disk

2) Send an ACCEPT(ballot_id, v) to proposer.

Have I already agreed to ignore proposals with this proposal number?

26.49Crooks & Zaharia CS162 © UCB Spring 2025

Phase 2 – Proposal (Bill) (Version 2)

Leader sends proposed value v by sending
PROPOSE(ballot_id,v) to all

(where v is either leader’s value or result of PROMISE message)

If participant has already received a higher ballot id
 (b > ballot_id), do nothing.

Else:
1) Store b=ACCEPT(ballot_id, v) on disk

2) Send an ACCEPT(ballot_id, v) to proposer.

26.50Crooks & Zaharia CS162 © UCB Spring 2025

Harder Example (v2)

Prepare(1)

Prepare(2)

Promise(1)

26.51Crooks & Zaharia CS162 © UCB Spring 2025

Harder Example (v2)

Prepare(1)

Prepare(2)

Propose(1,
“soccer”)

Promise(1)

26.52Crooks & Zaharia CS162 © UCB Spring 2025

Harder Example (v2)

Prepare(1)

Prepare(2)

Propose(1,
“soccer”)

Accept(1,
“soccer”)Promise(1)

26.53Crooks & Zaharia CS162 © UCB Spring 2025

Harder Example (v2)

Prepare(1)

Prepare(2)

Propose(1,
“soccer”)

Commit(1,
“soccer”)

Promise(1)
Accept(1,
“soccer”)

26.54Crooks & Zaharia CS162 © UCB Spring 2025

Harder Example (v2)

Prepare(1)

Prepare(2)

Propose(1,
“soccer”)

Commit(1,
“soccer”)

Promise(2, (1,
“soccer”))

Promise(1)
Accept(1,
“soccer”)

26.55Crooks & Zaharia CS162 © UCB Spring 2025

Harder Example (v2)

Prepare(1)

Prepare(2)

Propose(1,
“soccer”)

Commit(1,
“soccer”)

Promise(1)
Accept(1,
“soccer”)

Propose(2,
“soccer”)

Promise(2, (1,
“soccer”))

26.56Crooks & Zaharia CS162 © UCB Spring 2025

Harder Example (v2)

Prepare(1)

Prepare(2)

Propose(1,
“soccer”)

Commit(1,
“soccer”)

Promise(1)
Accept(1,
“soccer”)

Propose(2,
“soccer”)

Accept(2,
“soccer”)Promise(2, (1,

“soccer”))

26.57Crooks & Zaharia CS162 © UCB Spring 2025

Harder Example (v2)

Prepare(1)

Prepare(2)

Propose(1,
“soccer”)

Commit(1,
“soccer”)

Promise(1)
Accept(1,
“soccer”)

Propose(2,
“soccer”)

Accept(2,
“soccer”)

Commit(1,
“soccer”)

Commit(2,
“soccer”)

Promise(2, (1,
“soccer”))

26.58Crooks & Zaharia CS162 © UCB Spring 2025

We do have consensus!

Prepare(1)

Prepare(2)

Propose(1,
“soccer”)

Commit(1,
“soccer”)

Promise(1)
Accept(1,
“soccer”)

Propose(2,
“soccer”)

Accept(2,
“soccer”)

Commit(1,
“soccer”)

Commit(2,
“soccer”)

Agreement:

All processes that decide do
so on the same value

Promise(2, (1,
“soccer”))

26.59Crooks & Zaharia CS162 © UCB Spring 2025

We do have consensus!

Prepare(1)

Prepare(2)

Propose(1,
“soccer”)

Commit(1,
“soccer”)

Promise(1)
Accept(1,
“soccer”)

Propose(2,
“soccer”)

Accept(2,
“soccer”)

Commit(1,
“soccer”)

Commit(2,
“soccer”)

Promise(2, (1,
“soccer”))

Consensus happens here! But participants don’t know it yet

26.60Crooks & Zaharia CS162 © UCB Spring 2025

We do have consensus!

Prepare(1)

Prepare(2)

Propose(1,
“soccer”)

Commit(1,
“soccer”)

Promise(1)
Accept(1,
“soccer”)

Propose(2,
“soccer”)

Accept(2,
“soccer”)

Commit(1,
“soccer”)

Commit(2,
“soccer”)

Promise(2, (1,
“soccer”))

Because consensus *may* have happened on this value, proposer must re-propose it

26.61Crooks & Zaharia CS162 © UCB Spring 2025

Core Safety Theorem

If some round has a majority (i.e., quorum) accepting
value v, then subsequently at each round either:

1) the round chooses v as decision or

2) the round fails

Recall that cannot prove liveness!
(Think of proposers livelocking)

26.62Crooks & Zaharia CS162 © UCB Spring 2025

Core Safety Theorem Proof Intuition

Majority of acceptors
accept (n, v):

v is chosen
Receive 2f+1
promise
messages

If 2f+1 participants accepted v in round r

for all rounds r’>r, proposer will receive at least one PROMISE(r’,
(r,v))

26.63Crooks & Zaharia CS162 © UCB Spring 2025

Coordination – Paxos Summary

Decide a single value at once. Always safe, mostly live.

Three phases. Eventual (not simultaneous) agreement

Real implementations of Paxos decide on a “log” (MultiPaxos, Viewstamp
Replication)

26.64Crooks & Zaharia CS162 © UCB Spring 2025

Topic roadmap

Distributed File Systems

Peer-To-Peer System:
The Internet

Distributed Data Processing

Coordination
(Atomic Commit and Consensus)

26.65Crooks & Zaharia CS162 © UCB Spring 2025

Topic Breakdown

Virtualizing the CPU

Process Abstraction and API

Threads and Concurrency

Scheduling

Virtualizing Memory
Virtual Memory

Paging

Persistence
IO devices

File Systems

Distributed Systems
Challenges with distribution

Data Processing & Storage

26.66Crooks & Zaharia CS162 © UCB Spring 2025

	Please fill this in!
	CS162�Operating Systems and�Systems Programming�Lecture 26���Coordination - Paxos
	Recall: General’s Paradox
	Recall: Eventual Agreement: Two-Phase Commit
	Recall: 2PC Summary
	Failures
	Failure Model as a Contract
	Solving Consensus
	Consensus
	Consensus
	Paxos
	System Model
	Greek Island Politics
	Rounds
	Three Phases Per Round
	Phase 1 – Election
	Phase 1 – Election (Version 1)
	Phase 1 – Election (Version 1)
	Phase 2 – Proposal (Bill) (Version 1)
	Phase 3 – Decision (Law) (Version 1)
	Easy Example
	Easy Example
	Easy Example
	Moderately Easy Example
	Moderately Easy Example
	Moderately Easy Example
	Moderately Easy Example
	Moderately Easy Example
	Moderately Easy Example: Quorums
	Moderately Easy Example: Quorums
	Moderately Easy Example: Quorums
	Moderately Easy Example: Quorums
	Moderately Easy Example: Quorums
	Are we done?
	Harder Example
	Harder Example
	Harder Example
	Harder Example
	Harder Example
	Harder Example
	Harder Example
	Harder Example
	We don’t have consensus!
	What went wrong?
	Phase 1 – Election (Version 1)
	Phase 1 – Election (Version 2)
	Phase 1 – Election (Version 2)
	Phase 2 – Proposal (Bill) (Version 1)
	Phase 2 – Proposal (Bill) (Version 2)
	Harder Example (v2)
	Harder Example (v2)
	Harder Example (v2)
	Harder Example (v2)
	Harder Example (v2)
	Harder Example (v2)
	Harder Example (v2)
	Harder Example (v2)
	We do have consensus!
	We do have consensus!
	We do have consensus!
	Core Safety Theorem
	Core Safety Theorem Proof Intuition
	Coordination – Paxos Summary
	Topic roadmap
	Topic Breakdown
	Slide Number 66

