
CS162
Operating Systems and
Systems Programming

Lecture 23

Internet & Data Processing Systems

Professor Natacha Crooks & Matei Zaharia

https://cs162.org/

Slides based on prior slide decks from David Culler, Ion Stoica, John Kubiatowicz, Alison Norman and Lorenzo Alvisi

23.2Crooks & Zaharia CS162 © UCB Spring 2025

Recall: Distributed File Systems

Transparent access to files stored on a remote disk

Mount remote files into your local file system

– Directory in local file system refers to remote files

– e.g., /users/jane/prog/foo.c on laptop actually refers to
 /prog/foo.c on fs.cs.berkeley.edu

Network

Read File

Data

ServerClient

23.3Crooks & Zaharia CS162 © UCB Spring 2025

Recall: Network File System (NFS)

23.4Crooks & Zaharia CS162 © UCB Spring 2025

Recall: Stateless Protocol

Stateless Protocol: A protocol in which all information required to service a request
is included with the request

Idempotent Operations – repeating an operation multiple times is same as
executing it just once (e.g., storing to a mem addr.)

E.g. “ReadAt(file_id, offset, length)” instead of “Read(fd, length)”

23.5Crooks & Zaharia CS162 © UCB Spring 2025

NFS protocol: weak consistency
– Client polls server periodically to check for changes

» Polls server if data hasn’t been checked in last 3-30 seconds (exact timeout it
tunable parameter).

» Thus, when file is changed on one client, server is notified, but other clients
use old version of file until timeout.

What if multiple clients write to same file?
» In NFS, can get either version (or parts of both)
» Completely arbitrary!

Recall: NFS Cache Consistency

23.6Crooks & Zaharia CS162 © UCB Spring 2025

Recall: The Internet

Many different applications

– Email, web, P2P, etc.

Many different operating systems and devices

Many different network styles and technologies

– Wireless, wired, optical

How do we organize this mess

– Layering and end-to-end principle

Skype SSH NFS

Packet

Radio

Coaxial

cable

Fiber

optic

Application

Transmission

Media

HTTP

23.7Crooks & Zaharia CS162 © UCB Spring 2025

Recall: Internet Layers and Hourglass Model

Data Link

Physical

Applications

The Hourglass Model

Waist

“Narrow waist” facilitates
interoperability

Layers “abstract” away
hardware so that upper layers
are agnostic to lower layers

=> Sound familiar?

SMTP HTTP NTPDNS

TCP UDP

IP

Ethernet SONET 802.11

Transport

FiberCopper Radio

23.8Crooks & Zaharia CS162 © UCB Spring 2025

Implications of Hourglass Model

Single Internet-layer module (IP):

Allows arbitrary networks to interoperate

– Any network technology that supports IP can exchange packets

Allows applications to function on all networks

– Applications that can run on IP can use any network

Supports simultaneous innovations above and below IP

– But changing IP itself, i.e., IPv6, is very complex

23.9Crooks & Zaharia CS162 © UCB Spring 2025

Drawbacks of Internet Layering

Layer N may duplicate layer N-1 functionality

– E.g., error recovery to retransmit lost data

Layers may need same information

– E.g., timestamps, maximum transmission unit size

Layering can hurt performance

– E.g., hiding details about what is really going on

Some layers are not always cleanly separated

– Inter-layer dependencies for performance reasons

– Some dependencies in standards (header checksums)

23.10Crooks & Zaharia CS162 © UCB Spring 2025

2nd Design Idea: The End-To-End Argument

Hugely influential paper:

– “End-to-End Arguments in System Design” by Saltzer, Reed, and Clark (‘84)

“Sacred Text” of the Internet

– Endless disputes about what it means

– Everyone cites it as supporting their position

Simple Message: Some types of network functionality can only be correctly implemented
end-to-end

– Reliability, security, etc.

– Hosts can’t rely on network to fully implement them, so must do it themselves

23.11Crooks & Zaharia CS162 © UCB Spring 2025

Example: Reliable File Transfer

Solution 1: make each step reliable, and then concatenate them

Solution 2: end-to-end check and try again if necessary

OS

Appl.

OS

Appl.

Host A Host B

OK

23.12Crooks & Zaharia CS162 © UCB Spring 2025

Discussion

Solution 1 is incomplete

What happens if memory is corrupted?

Receiver has to do the check anyway!

Solution 2 is complete

Full functionality can be entirely implemented at application layer with no need
for reliability from lower layers

Is there any need to implement reliability at lower layers?

Well, it could be more efficient

23.13Crooks & Zaharia CS162 © UCB Spring 2025

End-to-End Principle

Implementing complex functionality in the network:

- Doesn’t always reduce host implementation complexity

- Does increase network complexity

- Probably imposes delay and overhead on all applications, even if they don’t
need functionality

However, implementing in network can enhance performance in some cases

– e.g., very lossy link

23.14Crooks & Zaharia CS162 © UCB Spring 2025

How to Interpret E2E Argument?

Conservative interpretation: Don’t implement a function at the lower levels of the
system unless it can be completely implemented at this level

Moderate interpretation: Think twice before implementing functionality in network

- If hosts can do the functionality E2E, do it in network only as perf enhancement

- Don’t put a burden on apps that don’t need the functionality

23.15Crooks & Zaharia CS162 © UCB Spring 2025

Topic Roadmap

Distributed File System: NFS

Peer-To-Peer System: The Internet

Coordination

(Atomic Commit and Consensus)

Distributed Data Processing

(MapReduce and Spark)

23.16Crooks & Zaharia CS162 © UCB Spring 2025

Case Study: Distributed Data Processing

23.17Crooks & Zaharia CS162 © UCB Spring 2025

Data is growing faster than server speeds

Growing data sources
» Web, mobile, scientific, …

Cheap storage
» Doubling every ~18 months

Stalling CPU speeds

The Big Data Problem

23.18Crooks & Zaharia CS162 © UCB Spring 2025

Examples

1000 genomes project: 200 TB

Google web index: 100+ PB

Ingest per day at large Databricks customer: 1 PB

Cost of 1 TB of disk: $20

Time to read 1 TB from disk: 3 hours (100 MB/s)

23.19Crooks & Zaharia CS162 © UCB Spring 2025

The Big Data Problem

Single machine can no longer process or store all the data!

Only solution is to distribute over large clusters

23.20Crooks & Zaharia CS162 © UCB Spring 2025

Google Datacenter

How do we program this thing?

23.21Crooks & Zaharia CS162 © UCB Spring 2025

Message-passing between nodes

Really hard to do at scale:

– How to divide problem across nodes?

– How to deal with failures?

– Even worse: stragglers (node is not failed, but slow)

Almost nobody does this for distributed data processing

Traditional Network Programming

23.22Crooks & Zaharia CS162 © UCB Spring 2025

Distributed Data Processing Frameworks

Come up with a model for breaking large computations into smaller tasks, then
build a framework that distributes those tasks to workers in a cluster

Framework handles scheduling, fault recovery, etc

Recent wave popularized with MapReduce (and open source Hadoop)

23.23Crooks & Zaharia CS162 © UCB Spring 2025

MapReduce History

Developed by Google, paper published in 2004

Google had lots of raw data:
– Crawled web pages
– Server logs
– Search data

Wanted to build many apps:
web indexing, usage analysis,
spam filtering, etc

23.24Crooks & Zaharia CS162 © UCB Spring 2025

MapReduce History

Environment: clusters of cheap commodity machines
– “Off-the-shelf” machines, i.e. hardware not custom-built for reliability

Many “one-off” solutions for parallelizing workloads
– Hard to maintain
– Hard to get right
– Time-consuming to implement

23.25Crooks & Zaharia CS162 © UCB Spring 2025

MapReduce Programming Model

Data type: key-value records

Map function:

(Kin, Vin) ➔ list(Kinter, Vinter)

Reduce function:

(Kinter, list(Vinter)) ➔ list(Kout, Vout)

23.26Crooks & Zaharia CS162 © UCB Spring 2025

Example: Word Count

How can we count how many times each word occurs in a large dataset
using only map and reduce?

Four steps:

1) Convert files into pairs of (key, value)

2) Define a map function. Apply to all files.

3) Shuffle! All elements with same key go to same reduce.

4) Define a reduce function. Apply to result of the map function.

23.28Crooks & Zaharia CS162 © UCB Spring 2025

1000 ft view of Map Reduce

Map

Map

Map

Map

Map

Reduce

File

File

File

Reduce

File

File

23.29Crooks & Zaharia CS162 © UCB Spring 2025

Word Count Map Reduce

23.30Crooks & Zaharia CS162 © UCB Spring 2025

WC. Step 1: to (Key, Value)

Transform file into:
(File Name, List of words)

Map function takes (Key, List) and
maps it to List (Key, Value).

23.31Crooks & Zaharia CS162 © UCB Spring 2025

Map function:

Associate each word with a count!

WC. Step 2: Map Function

23.32Crooks & Zaharia CS162 © UCB Spring 2025

WC. Step 2: Map Function

23.33Crooks & Zaharia CS162 © UCB Spring 2025

WC. Step 3: Shuffle!

Aggregate intermediate results by key

23.34Crooks & Zaharia CS162 © UCB Spring 2025

WC. Step 4: Reduce

23.35Crooks & Zaharia CS162 © UCB Spring 2025

WC. Step 4: Reduce

23.36Crooks & Zaharia CS162 © UCB Spring 2025

WC. Final Step, Generate Output

23.37Crooks & Zaharia CS162 © UCB Spring 2025

Map Reduce System Architecture

Coord-

inator

23.38Crooks & Zaharia CS162 © UCB Spring 2025

Fault Tolerance

MapReduce assumes that:

Any individual machine is unlikely to crash
But large cluster of machines is likely to experience failures

MapReduce does not attempt to handle coordinator crashes

MapReduce does try to handle worker failures

23.39Crooks & Zaharia CS162 © UCB Spring 2025

Fault Tolerance in MapReduce

1. If a map or reduce task crashes:

– Retry on another node

» OK for a map because it had no dependencies

» OK for reduce because map outputs are on disk

– If the same task repeatedly fails, fail the job or ignore that input block

Note: For the fault tolerance to work, user tasks must be idempotent

• Deterministic and side-effect-free (e.g. not based on time, randomness, etc)

23.40Crooks & Zaharia CS162 © UCB Spring 2025

Fault Tolerance in MapReduce

2. If a worker node crashes:

– Relaunch its current tasks on other nodes

– Relaunch any maps the node previously ran

» Necessary because their output files were lost along with the crashed node

23.41Crooks & Zaharia CS162 © UCB Spring 2025

Fault Tolerance in MapReduce

3. If a task is going slowly (straggler):

– Launch second copy of task on another node

– Take the output of whichever copy finishes first, and kill the other one

Critical for performance in large clusters (many possible causes of stragglers)

23.43Crooks & Zaharia CS162 © UCB Spring 2025

Beyond MapReduce

Not all applications can easily be expressed with maps & reduces

MapReduce stores all intermediate state on disk, which is slow

A lot of other distributed programming frameworks:

in-memory processing (Spark), distributed SQL (Apache Hive), graph (PowerGraph),
incremental processing (Naiad), streaming (Flink), and many others

23.44Crooks & Zaharia CS162 © UCB Spring 2025

Example Apache Spark:

Open source engine that generalizes the MapReduce model with

• Higher-level operators: not just map & reduce, but join, filter, SQL, streaming
operators, and many built-in libraries

• Efficient handling of intermediate datasets (e.g. reliable storage in memory)

23.45Crooks & Zaharia CS162 © UCB Spring 2025

Key Idea in Spark

Resilient Distributed Datasets (RDDs)

– Immutable collections of objects that can be stored in memory or disk
across a cluster

– Built with parallel transformation operators (map, filter, …)

– Automatically rebuilt on failure

Think of these as a form of distributed, reliable virtual memory!

23.46Crooks & Zaharia CS162 © UCB Spring 2025

Load error messages from a log into memory, then interactively search for
various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(‘\t’)(2))

messages.cache()
Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

messages.filter(lambda s: s.contains(“foo”)).count()

messages.filter(lambda s: s.contains(“bar”)).count()

. . .

tasks

results

Cache 1

Cache 2

Cache 3

Base RDDTransformed RDD

Action

Performance: full-text search of Wikipedia in 1
sec (vs 40 s for on-disk data)

Example: Log Mining

23.47Crooks & Zaharia CS162 © UCB Spring 2025

file.map(record => (record.type, 1))
 .reduceByKey((x, y) => x + y)
 .filter((type, count) => count > 10)

filterreducemap

In
p

u
t

fil
e

RDDs track lineage info to rebuild lost data

RDDs: Fault Tolerance

23.48Crooks & Zaharia CS162 © UCB Spring 2025

filterreducemap

In
p

u
t

fil
e

file.map(record => (record.type, 1))
 .reduceByKey((x, y) => x + y)
 .filter((type, count) => count > 10)

RDDs: Fault Tolerance

RDDs track lineage info to rebuild lost data

23.49Crooks & Zaharia CS162 © UCB Spring 2025

Iterative App Performance (Logistic Regression) with RDDs

0

500

1000

1500

2000

2500

3000

3500

4000

1 5 10 20 30

R
u
n
n

in
g

 T
im

e
 (

s)

Number of Iterations

Hadoop

Spark

110 s / iteration

first iteration 80 s

further iterations 1 s

23.52Crooks & Zaharia CS162 © UCB Spring 2025

Early Spark Meetups

2013 Slide: Libraries Built on Spark

0

20000

40000

60000

80000

100000

120000

140000

Hadoop
MapReduce

Impala (SQL) Storm
(Streaming)

Giraph
(Graph)

Spark

non-test, non-example source lines

Shark

GraphX
Streaming

2013 Slide: Performance Comparison

Im
pa

la
 (d

is
k)

Im
pa

la
 (m

em
)

R
ed

sh
if

t

Sh
ar

k
(d

is
k)

Sh
ar

k
(m

em
)

0

5

10

15

20

25
R

es
po

ns
e

T
im

e
(s

)

SQL

St
or

m

Sp
ar

k

0

5

10

15

20

25

30

35

Th
ro

ug
hp

ut
 (M

B
/s

/n
od

e)

Streaming

H
ad

oo
p

G
ir

ap
h

G
ra

ph
La

b

G
ra

ph
X

0

5

10

15

20

25

30

R
es

po
ns

e
T

im
e

(m
in

)

Graph

23.55Crooks & Zaharia CS162 © UCB Spring 2025

Hadoop Components

• Distributed file system (HDFS)

– Single namespace for entire cluster

– Replicates data 3x for fault-tolerance

• MapReduce framework

– Runs jobs submitted by users

– Manages work distribution & fault-tolerance

– Colocated with file system

23.56Crooks & Zaharia CS162 © UCB Spring 2025

Hadoop Distributed File System

Files split into 128MB blocks

Blocks replicated across several
datanodes (often 3)

Namenode stores metadata (file
names, locations, etc)

Optimized for large files,
sequential reads

Files are append-only

Namenode

Datanodes

1
2
3
4

1
2
4

2
1
3

1
4
3

3
2
4

File1

	Default Section
	Slide 1: CS162 Operating Systems and Systems Programming Lecture 23 Internet & Data Processing Systems
	Slide 2: Recall: Distributed File Systems
	Slide 3: Recall: Network File System (NFS)
	Slide 4: Recall: Stateless Protocol
	Slide 5: Recall: NFS Cache Consistency
	Slide 6: Recall: The Internet
	Slide 7: Recall: Internet Layers and Hourglass Model
	Slide 8: Implications of Hourglass Model
	Slide 9: Drawbacks of Internet Layering
	Slide 10: 2nd Design Idea: The End-To-End Argument
	Slide 11: Example: Reliable File Transfer
	Slide 12: Discussion
	Slide 13: End-to-End Principle
	Slide 14: How to Interpret E2E Argument?
	Slide 15: Topic Roadmap
	Slide 16: Case Study: Distributed Data Processing
	Slide 17: The Big Data Problem
	Slide 18: Examples
	Slide 19: The Big Data Problem
	Slide 20: Google Datacenter
	Slide 21: Traditional Network Programming
	Slide 22: Distributed Data Processing Frameworks
	Slide 23: MapReduce History
	Slide 24: MapReduce History
	Slide 25: MapReduce Programming Model
	Slide 26: Example: Word Count
	Slide 28: 1000 ft view of Map Reduce
	Slide 29: Word Count Map Reduce
	Slide 30: WC. Step 1: to (Key, Value)
	Slide 31: WC. Step 2: Map Function
	Slide 32: WC. Step 2: Map Function
	Slide 33: WC. Step 3: Shuffle!
	Slide 34: WC. Step 4: Reduce
	Slide 35: WC. Step 4: Reduce
	Slide 36: WC. Final Step, Generate Output
	Slide 37: Map Reduce System Architecture
	Slide 38: Fault Tolerance
	Slide 39: Fault Tolerance in MapReduce
	Slide 40: Fault Tolerance in MapReduce
	Slide 41: Fault Tolerance in MapReduce
	Slide 43: Beyond MapReduce
	Slide 44: Example Apache Spark:
	Slide 45: Key Idea in Spark
	Slide 46: Example: Log Mining
	Slide 47: RDDs: Fault Tolerance
	Slide 48: RDDs: Fault Tolerance
	Slide 49: Iterative App Performance (Logistic Regression) with RDDs
	Slide 52: Early Spark Meetups
	Slide 53: 2013 Slide: Libraries Built on Spark
	Slide 54: 2013 Slide: Performance Comparison
	Slide 55: Hadoop Components
	Slide 56: Hadoop Distributed File System

