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Recall: The promise of distributed systems

Availability
Proportion of time system is in functioning condition

=> One machine goes down, use another

Fault-tolerance
System has well-defined behavior when fault occurs

=> Store data in multiple locations

Scalability
Add resources to the system to support more work 

Transparency
The ability of the system to mask its complexity behind a simple interface
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Recall: Message Passing

How do you actually program a distributed application?

Interface:

– Mailbox (mbox): temporary holding area for messages

– Send(message,mbox)

– Receive(buffer,mbox)
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Recall: Data Representation

An object in memory has a machine-specific binary representation

Externalizing an object requires us to turn it into a sequence of bytes

– Serialization/Marshalling: Express an object as a sequence of bytes

– Deserialization/Unmarshalling: Reconstruct object from its marshalled form

Many serialization formats, both text and binary: JSON, XML, Protobuf, …

Even for “simple” types like integers, there are several choices!
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Remote Procedure Call (RPC)

Raw messaging is a bit too low-level for programming

– Must wrap up information into message at source

– Must decide what to do with message at destination

– May need to sit and wait for multiple messages to arrive

– Must deal with data representation by hand
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Remote Procedure Call (RPC)

Another option: Remote Procedure Call (RPC)

– Calls a procedure on a remote machine

– Idea: Make communication look like an ordinary function call

– Automate the complexity of translating & transmitting data

– Client calls: 
 remoteFileSystem→Read(“file.txt”);

– Translated automatically into call on server:
 fileSys→Read(“file.txt”);
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RPC Implementation

Request-response message passing (under the covers!)

“Stub” provides glue on client/server

– Client stub is responsible for marshalling arguments and unmarshalling the 
return values

– Server-side stub is responsible for unmarshalling arguments and marshalling the 
return values.

Marshalling involves (depending on system)

– Converting values to a canonical form, serializing individual objects, copying 
arguments passed by reference, etc. 
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RPC Details (1/3)

Stub generator: Compiler that generates stubs (e.g. protoc for Protobuf / gRPC)

– Input: procedure definitions in an “interface definition language (IDL)”

» Contains names and data types

– Output: stub code in the appropriate source language

» Code for client to pack message, send it off, wait for result, unpack & return it

» Code for server to unpack message, call procedure, pack results, send them

service Greeter {
  rpc SayHello (HelloRequest)
      returns (HelloReply) {}
}

message HelloRequest {
  string name = 1;
}

message HelloReply {
  string response = 1;
}

hello.proto

import hello_pb2
import hello_pb2_grpc

class App(hello_pb2_grpc.GreeterServicer):

  def SayHello(self, request, context):
    return hello_pb2.HelloReply(
       message=f"Hello, {request.name}!")

my_server.py$ protoc --python-out=. hello.proto

hello_pb2.py

hello_pb2_grpc.py

helloRequest.py

helloReply.py
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RPC Details (2/3)

How does client know which mbox (address) to send to?

– Need to translate name of remote service into network endpoint (remote 
machine, port, possibly other info)

– Binding: the process of converting a user-visible name into a network endpoint

» This is another word for “naming” at network level

» Static: fixed at compile time

» Dynamic: performed at runtime

Most RPC systems use dynamic binding via a name service (e.g. Domain Name System)

– Name service provides dynamic translation of service name → mbox

– Why dynamic binding?

» Fail-over: If server fails, use a different one

» Access control: check who is permitted to access service
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RPC Details (3/3)

What if there are multiple servers?

– Could give flexibility at binding time

» Return mbox for an unloaded server for each new client during name lookup

– Could use same mbox address (router level redirect)

» Choose unloaded server for each new request

» Only works if no state across requests

Equivalence with regular procedure call

– Parameters  Request message

– Result  Reply message

– Name of Procedure: Passed in request message

– Return Address: client return mbox

But RPCs are not 
normal calls!
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Problem with RPC: Non-Atomic Failures

Different failure modes in distributed system than on a single machine

Consider many different types of failures

– User-level bug causes address space to crash

– Machine crash or kernel bug causes all processes on one machine to fail

– Some machine is compromised by malicious party

Can easily result in inconsistent view of the world

– Did my cached data get written back or not?

– Did server do what I requested or not?

Answer? Distributed transactions, 2PC, consensus, …
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Problem with RPC: Performance

RPC is not performance transparent:

– Cost of local procedure call << same-machine RPC << network RPC

– Overheads: marshalling, stubs, kernel-crossing, communication

Programmers must be aware that RPC is not free 

– Caching can help, but makes failure handling more complex
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Topic Roadmap

Distributed File System: NFS

Peer-To-Peer System: The Internet

Coordination

(Atomic Commit and Consensus)

Distributed Data Processing

(MapReduce and Spark)
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Distributed File Systems

Transparent access to files stored on a remote disk

Mount remote files into your local file system

– Directory in local file system refers to remote files

– e.g., /users/jane/prog/foo.c on laptop actually refers to
        /prog/foo.c on fs.cs.berkeley.edu

Naming Choices:

– [Hostname,localname]: filename includes server

– A global name space: filename unique in “world”

Network

Read File

Data

ServerClient
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Virtual Filesystem Switch (VFS)

Virtual abstraction of file system in many OSes (including Linux)
– Provides virtual superblocks, inodes, files, etc
– Compatible with a variety of local and remote file systems

VFS allows the same system call interface (the API) to be used for different types 
of file systems in the same naming hierarchy

– The API is to the VFS layer, rather than any specific type of file system
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Simple Distributed File System

Remote Disk: Reads and writes forwarded to server. Use Remote Procedure Calls (RPC) to translate 
file system calls into remote requests 

Advantage: Server provides consistent view of file system to multiple clients

Problems?  Performance!
– Going over network is slower than going to local memory
– Lots of network traffic/not well pipelined
– Server can be a bottleneck

Server

Read (RPC)

Return (Data)

cacheClient

Client
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Client

cache
F1:V1F1:V2

Use of caching to reduce network load

Read (RPC)

Return (Data)

cache

cache

Idea: Use caching to reduce network load
– In practice: use buffer cache at source and destination

Advantage: if open/read/write/close can be done locally, don’t need to do any network traffic…fast!

Problems: 
– Failure:

» Client caches have data not committed at server
– Cache consistency! Client caches not consistent with server/each other

F1:V1

F1:V2

read(f1)

write(f1)

→V1
read(f1)→V1
read(f1)→V1

→OK

read(f1)→V1

read(f1)→V2

Crash!

Server
Client
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Dealing with Failures

What if server crashes? Can client wait until it comes back and just continue making 
requests?

– Changes in server’s buffer cache but not in disk are lost

What if there is shared state across RPC's?

– Client opens file, then does a seek

– Server crashes

– What if client wants to do another read?

Similar problem: What if client removes a file but server crashes before 
acknowledgement?
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Stateless Protocol

Stateless Protocol: A protocol in which all information required to service a request 
is included with the request

Idempotent Operations – repeating an operation multiple times is same as 
executing it just once (e.g., storing to a mem addr.)

Client: timeout expires without reply, just run the operation again (safe regardless 
of first attempt)

Recall HTTP: Also a stateless protocol

– Include cookies with request to simulate a session
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Case Study: Network File System (NFS)

Introduced by Sun in 1986 as an open protocol

Three layers for NFS system

UNIX file-system interface: open, read, write, close calls + file descriptors

VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests

NFS service layer: bottom layer of the architecture
» Implements the NFS protocol
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NFS Continued

NFS Protocol: RPC for file operations on server
– Reading/searching a directory 
– manipulating links and directories 
– accessing file attributes/reading and writing files

Write-through caching: Modified data committed to server’s disk before returning 
a result to the client 

– Lose some of the advantages of caching
– Time to perform write() can be long
– Need some way for readers to eventually notice changes! (more on this later)

NSF2: every write persisted
NSF3: open-to-close consistency
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NFS Continued

NFS servers are stateless; each request provides all arguments require for execution

– E.g. reads include information for entire operation, such as 
ReadAt(inumber,position), not Read(openfile)

– No need to perform network open() or close() on file – each operation stands on 
its own

Idempotent: Performing requests multiple times has same effect as performing them 
exactly once

– Example: Read and write file blocks: just re-read or re-write file block – no other 
side effects

– Example: What about “remove”?  NFS does operation twice and second time 
returns an advisory error 
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NFS Continued
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NFS Continued
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NFS Continued

Failure Model: Transparent to client system

– Is this a good idea?  What if you are in the middle of reading a file and server 
crashes? 

– Options (NFS Provides both):
» Hang until server comes back up (next week?)
» Return an error. (Of course, most applications don’t know they are talking 

over network)
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NFS Architecture
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NFS protocol: weak consistency
– Client polls server periodically to check for changes

» Polls server if data hasn’t been checked in last 3-30 seconds (exact timeout it 
tunable parameter).

» Thus, when file is changed on one client, server is notified, but other clients 
use old version of file until timeout.

What if multiple clients write to same file? 
» In NFS, can get either version (or parts of both)
» Completely arbitrary!

NFS Cache consistency
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cache
F1:V2

cache

cache

F1:V1

F1:V2

Client

Server
Client
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NFS Cache consistency

F1 still ok?

No: (F1:V2)
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What sort of cache coherence might we expect?
– i.e. what if one CPU changes file, and before it’s done, another CPU reads file?

Example: Start with file contents = “A”

Sequential Ordering Constraints

Read: gets A

Read: gets A or B

Write B

Write C

Read: parts of B or CClient 1:

Client 2:
Client 3: Read: parts of B or C

Time
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What would we actually want?

– Assume we want distributed system to behave exactly the same as if all 
processes are running on single system

» If read finishes before write starts, get old copy
» If read starts after write finishes, get new copy
» Otherwise, get either new or old copy

– For NFS:
» If read starts more than 30 seconds after write, get new copy; otherwise, 

could get partial update

Sequential Ordering Constraints
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NFS Pros and Cons

NFS Pros:

– Simple, Highly portable

NFS Cons:

– Sometimes inconsistent!

– Doesn’t scale to large # clients

» Must keep checking to see if caches out of date

» Server becomes bottleneck due to polling traffic
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Case study: The Internet

The Internet is the largest distributed system that exists!

Many different applications

– Email, web, P2P, etc.

Many different operating systems and devices

Many different network styles and technologies

– Wireless, wired, optical

How do we organize this mess

– Layering & end-to-end principle

Skype SSH NFS

Packet

Radio

Coaxial 

cable

Fiber

optic

Application

Transmission

Media

HTTP
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The Internet: Layers, Layers, Layers

Introduce intermediate layers that provide set of abstractions for various network functionality & 
technologies

– A new app/media implemented only once

Goal: Reliable communication channels on which to build distributed applications

Skype SSH NFS

Packet

radio

Coaxial 

cable

Fiber

optic

Application

Transmission

Media

HTTP

Intermediate 

layers

“Narrow Waist”

Internet Protocol
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The Internet: hourglass model

Data Link

Physical

Applications

The Hourglass Model

Waist

“Narrow waist” facilitates 
interoperability

Layers “abstract” away hardware 
so that upper layers are agnostic 
to lower layers

=> Sound familiar?

SMTP HTTP NTPDNS

TCP UDP

IP

Ethernet SONET 802.11

Transport

FiberCopper Radio
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The Internet: Implications of Hourglass

Single Internet-layer module (IP):

Allows arbitrary networks to interoperate

– Any network technology that supports IP can exchange packets

Allows applications to function on all networks

– Applications that can run on IP can use any network

Supports simultaneous innovations above and below IP

– But changing IP itself, i.e., IPv6, very involved
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The Internet: Drawbacks of Layering

Layer N may duplicate layer N-1 functionality 

– E.g., error recovery to retransmit lost data

Layers may need same information

– E.g., timestamps, maximum transmission unit size

Layering can hurt performance

– E.g., hiding details about what is really going on

Some layers are not always cleanly separated

– Inter-layer dependencies for performance reasons

– Some dependencies in standards (header checksums)
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End-To-End Argument

Hugely influential paper: 

– “End-to-End Arguments in System Design” by Saltzer, Reed, and Clark (‘84)

“Sacred Text” of the Internet

– Endless disputes about what it means

– Everyone cites it as supporting their position

Simple Message: Some types of network functionality can only be correctly implemented 
end-to-end

– Reliability, security, etc.

Hosts cannot rely on the network help to meet requirement, so must implement it 
themselves
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Example: Reliable File Transfer

Solution 1: make each step reliable, and then concatenate them

Solution 2: end-to-end check and try again if necessary

OS

Appl.

OS

Appl.

Host A Host B

OK
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Discussion

Solution 1 is incomplete

What happens if memory is corrupted?

Receiver has to do the check anyway!

Solution 2 is complete

Full functionality can be entirely implemented at application layer with no need 
for reliability from lower layers

Is there any need to implement reliability at lower layers?

Well, it could be more efficient



22.44Crooks & Zaharia CS162 © UCB Spring 2025

End-to-End Principle

Implementing complex functionality in the network:

- Doesn’t always reduce host implementation complexity

- Does increase network complexity

- Probably imposes delay and overhead on all applications, even if they don’t 
need functionality

However, implementing in network can enhance performance in some cases

– e.g., very lossy link
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Conservative Interpretation of E2E

Don’t implement a function at the lower levels of the system unless it can 
be completely implemented at this level
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Moderate Interpretation

Think twice before implementing functionality in the network

If hosts can implement functionality correctly, implement it in a lower layer only 
as a performance enhancement

But do so only if it does not impose burden on applications that do not require 
that functionality
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