
CS162
Operating Systems and
Systems Programming

Lecture 22

Distributed File Systems & Internet

Professor Natacha Crooks & Matei Zaharia

https://cs162.org/

Slides based on prior slide decks from David Culler, Ion Stoica, John Kubiatowicz, Alison Norman and Lorenzo Alvisi

22.2Crooks & Zaharia CS162 © UCB Spring 2025

Recall: The promise of distributed systems

Availability
Proportion of time system is in functioning condition

=> One machine goes down, use another

Fault-tolerance
System has well-defined behavior when fault occurs

=> Store data in multiple locations

Scalability
Add resources to the system to support more work

Transparency
The ability of the system to mask its complexity behind a simple interface

22.4Crooks & Zaharia CS162 © UCB Spring 2025

Recall: Message Passing

How do you actually program a distributed application?

Interface:

– Mailbox (mbox): temporary holding area for messages

– Send(message,mbox)

– Receive(buffer,mbox)

Network

Se
n
d

R
e
ceive

22.5Crooks & Zaharia CS162 © UCB Spring 2025

Recall: Data Representation

An object in memory has a machine-specific binary representation

Externalizing an object requires us to turn it into a sequence of bytes

– Serialization/Marshalling: Express an object as a sequence of bytes

– Deserialization/Unmarshalling: Reconstruct object from its marshalled form

Many serialization formats, both text and binary: JSON, XML, Protobuf, …

Even for “simple” types like integers, there are several choices!

22.6Crooks & Zaharia CS162 © UCB Spring 2025

Remote Procedure Call (RPC)

Raw messaging is a bit too low-level for programming

– Must wrap up information into message at source

– Must decide what to do with message at destination

– May need to sit and wait for multiple messages to arrive

– Must deal with data representation by hand

22.7Crooks & Zaharia CS162 © UCB Spring 2025

Remote Procedure Call (RPC)

Another option: Remote Procedure Call (RPC)

– Calls a procedure on a remote machine

– Idea: Make communication look like an ordinary function call

– Automate the complexity of translating & transmitting data

– Client calls:
 remoteFileSystem→Read(“file.txt”);

– Translated automatically into call on server:
 fileSys→Read(“file.txt”);

22.8Crooks & Zaharia CS162 © UCB Spring 2025

Client (caller)

r = f(v1, v2);

Server (callee)

res_t f(a1, a2)

call

return receive

return

call

bundle

ret vals

unbundle

ret vals

send

receive

Machine A

Machine B

Packet

Handler

Packet

Handler

N
e
tw

o
rkN

e
tw

o
rk

Server

Stub

unbundle

args

send

Server

Stub

RPC Information Flow

Client

Stub

bundle

args

22.9Crooks & Zaharia CS162 © UCB Spring 2025

RPC Implementation

Request-response message passing (under the covers!)

“Stub” provides glue on client/server

– Client stub is responsible for marshalling arguments and unmarshalling the
return values

– Server-side stub is responsible for unmarshalling arguments and marshalling the
return values.

Marshalling involves (depending on system)

– Converting values to a canonical form, serializing individual objects, copying
arguments passed by reference, etc.

22.10Crooks & Zaharia CS162 © UCB Spring 2025

RPC Details (1/3)

Stub generator: Compiler that generates stubs (e.g. protoc for Protobuf / gRPC)

– Input: procedure definitions in an “interface definition language (IDL)”

» Contains names and data types

– Output: stub code in the appropriate source language

» Code for client to pack message, send it off, wait for result, unpack & return it

» Code for server to unpack message, call procedure, pack results, send them

service Greeter {
 rpc SayHello (HelloRequest)
 returns (HelloReply) {}
}

message HelloRequest {
 string name = 1;
}

message HelloReply {
 string response = 1;
}

hello.proto

import hello_pb2
import hello_pb2_grpc

class App(hello_pb2_grpc.GreeterServicer):

 def SayHello(self, request, context):
 return hello_pb2.HelloReply(
 message=f"Hello, {request.name}!")

my_server.py$ protoc --python-out=. hello.proto

hello_pb2.py

hello_pb2_grpc.py

helloRequest.py

helloReply.py

22.11Crooks & Zaharia CS162 © UCB Spring 2025

RPC Details (2/3)

How does client know which mbox (address) to send to?

– Need to translate name of remote service into network endpoint (remote
machine, port, possibly other info)

– Binding: the process of converting a user-visible name into a network endpoint

» This is another word for “naming” at network level

» Static: fixed at compile time

» Dynamic: performed at runtime

Most RPC systems use dynamic binding via a name service (e.g. Domain Name System)

– Name service provides dynamic translation of service name → mbox

– Why dynamic binding?

» Fail-over: If server fails, use a different one

» Access control: check who is permitted to access service

22.12Crooks & Zaharia CS162 © UCB Spring 2025

RPC Details (3/3)

What if there are multiple servers?

– Could give flexibility at binding time

» Return mbox for an unloaded server for each new client during name lookup

– Could use same mbox address (router level redirect)

» Choose unloaded server for each new request

» Only works if no state across requests

Equivalence with regular procedure call

– Parameters Request message

– Result Reply message

– Name of Procedure: Passed in request message

– Return Address: client return mbox

But RPCs are not
normal calls!

22.13Crooks & Zaharia CS162 © UCB Spring 2025

Problem with RPC: Non-Atomic Failures

Different failure modes in distributed system than on a single machine

Consider many different types of failures

– User-level bug causes address space to crash

– Machine crash or kernel bug causes all processes on one machine to fail

– Some machine is compromised by malicious party

Can easily result in inconsistent view of the world

– Did my cached data get written back or not?

– Did server do what I requested or not?

Answer? Distributed transactions, 2PC, consensus, …

22.14Crooks & Zaharia CS162 © UCB Spring 2025

Problem with RPC: Performance

RPC is not performance transparent:

– Cost of local procedure call << same-machine RPC << network RPC

– Overheads: marshalling, stubs, kernel-crossing, communication

Programmers must be aware that RPC is not free

– Caching can help, but makes failure handling more complex

22.15Crooks & Zaharia CS162 © UCB Spring 2025

Topic Roadmap

Distributed File System: NFS

Peer-To-Peer System: The Internet

Coordination

(Atomic Commit and Consensus)

Distributed Data Processing

(MapReduce and Spark)

22.16Crooks & Zaharia CS162 © UCB Spring 2025

Distributed File Systems

Transparent access to files stored on a remote disk

Mount remote files into your local file system

– Directory in local file system refers to remote files

– e.g., /users/jane/prog/foo.c on laptop actually refers to
 /prog/foo.c on fs.cs.berkeley.edu

Naming Choices:

– [Hostname,localname]: filename includes server

– A global name space: filename unique in “world”

Network

Read File

Data

ServerClient

22.17Crooks & Zaharia CS162 © UCB Spring 2025

Virtual Filesystem Switch (VFS)

Virtual abstraction of file system in many OSes (including Linux)
– Provides virtual superblocks, inodes, files, etc
– Compatible with a variety of local and remote file systems

VFS allows the same system call interface (the API) to be used for different types
of file systems in the same naming hierarchy

– The API is to the VFS layer, rather than any specific type of file system

22.20Crooks & Zaharia CS162 © UCB Spring 2025

Simple Distributed File System

Remote Disk: Reads and writes forwarded to server. Use Remote Procedure Calls (RPC) to translate
file system calls into remote requests

Advantage: Server provides consistent view of file system to multiple clients

Problems? Performance!
– Going over network is slower than going to local memory
– Lots of network traffic/not well pipelined
– Server can be a bottleneck

Server

Read (RPC)

Return (Data)

cacheClient

Client

22.21Crooks & Zaharia CS162 © UCB Spring 2025

Client

cache
F1:V1F1:V2

Use of caching to reduce network load

Read (RPC)

Return (Data)

cache

cache

Idea: Use caching to reduce network load
– In practice: use buffer cache at source and destination

Advantage: if open/read/write/close can be done locally, don’t need to do any network traffic…fast!

Problems:
– Failure:

» Client caches have data not committed at server
– Cache consistency! Client caches not consistent with server/each other

F1:V1

F1:V2

read(f1)

write(f1)

→V1
read(f1)→V1
read(f1)→V1

→OK

read(f1)→V1

read(f1)→V2

Crash!

Server
Client

22.22Crooks & Zaharia CS162 © UCB Spring 2025

Dealing with Failures

What if server crashes? Can client wait until it comes back and just continue making
requests?

– Changes in server’s buffer cache but not in disk are lost

What if there is shared state across RPC's?

– Client opens file, then does a seek

– Server crashes

– What if client wants to do another read?

Similar problem: What if client removes a file but server crashes before
acknowledgement?

22.23Crooks & Zaharia CS162 © UCB Spring 2025

Stateless Protocol

Stateless Protocol: A protocol in which all information required to service a request
is included with the request

Idempotent Operations – repeating an operation multiple times is same as
executing it just once (e.g., storing to a mem addr.)

Client: timeout expires without reply, just run the operation again (safe regardless
of first attempt)

Recall HTTP: Also a stateless protocol

– Include cookies with request to simulate a session

22.24Crooks & Zaharia CS162 © UCB Spring 2025

Case Study: Network File System (NFS)

Introduced by Sun in 1986 as an open protocol

Three layers for NFS system

UNIX file-system interface: open, read, write, close calls + file descriptors

VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests

NFS service layer: bottom layer of the architecture
» Implements the NFS protocol

22.25Crooks & Zaharia CS162 © UCB Spring 2025

NFS Continued

NFS Protocol: RPC for file operations on server
– Reading/searching a directory
– manipulating links and directories
– accessing file attributes/reading and writing files

Write-through caching: Modified data committed to server’s disk before returning
a result to the client

– Lose some of the advantages of caching
– Time to perform write() can be long
– Need some way for readers to eventually notice changes! (more on this later)

NSF2: every write persisted
NSF3: open-to-close consistency

22.26Crooks & Zaharia CS162 © UCB Spring 2025

NFS Continued

NFS servers are stateless; each request provides all arguments require for execution

– E.g. reads include information for entire operation, such as
ReadAt(inumber,position), not Read(openfile)

– No need to perform network open() or close() on file – each operation stands on
its own

Idempotent: Performing requests multiple times has same effect as performing them
exactly once

– Example: Read and write file blocks: just re-read or re-write file block – no other
side effects

– Example: What about “remove”? NFS does operation twice and second time
returns an advisory error

22.27Crooks & Zaharia CS162 © UCB Spring 2025

NFS Continued

22.28Crooks & Zaharia CS162 © UCB Spring 2025

NFS Continued

22.29Crooks & Zaharia CS162 © UCB Spring 2025

NFS Continued

Failure Model: Transparent to client system

– Is this a good idea? What if you are in the middle of reading a file and server
crashes?

– Options (NFS Provides both):
» Hang until server comes back up (next week?)
» Return an error. (Of course, most applications don’t know they are talking

over network)

22.30Crooks & Zaharia CS162 © UCB Spring 2025

NFS Architecture

22.31Crooks & Zaharia CS162 © UCB Spring 2025

NFS protocol: weak consistency
– Client polls server periodically to check for changes

» Polls server if data hasn’t been checked in last 3-30 seconds (exact timeout it
tunable parameter).

» Thus, when file is changed on one client, server is notified, but other clients
use old version of file until timeout.

What if multiple clients write to same file?
» In NFS, can get either version (or parts of both)
» Completely arbitrary!

NFS Cache consistency

22.32Crooks & Zaharia CS162 © UCB Spring 2025

cache
F1:V2

cache

cache

F1:V1

F1:V2

Client

Server
Client

F1:V2

NFS Cache consistency

F1 still ok?

No: (F1:V2)

22.33Crooks & Zaharia CS162 © UCB Spring 2025

What sort of cache coherence might we expect?
– i.e. what if one CPU changes file, and before it’s done, another CPU reads file?

Example: Start with file contents = “A”

Sequential Ordering Constraints

Read: gets A

Read: gets A or B

Write B

Write C

Read: parts of B or CClient 1:

Client 2:
Client 3: Read: parts of B or C

Time

22.34Crooks & Zaharia CS162 © UCB Spring 2025

What would we actually want?

– Assume we want distributed system to behave exactly the same as if all
processes are running on single system

» If read finishes before write starts, get old copy
» If read starts after write finishes, get new copy
» Otherwise, get either new or old copy

– For NFS:
» If read starts more than 30 seconds after write, get new copy; otherwise,

could get partial update

Sequential Ordering Constraints

22.35Crooks & Zaharia CS162 © UCB Spring 2025

NFS Pros and Cons

NFS Pros:

– Simple, Highly portable

NFS Cons:

– Sometimes inconsistent!

– Doesn’t scale to large # clients

» Must keep checking to see if caches out of date

» Server becomes bottleneck due to polling traffic

22.36Crooks & Zaharia CS162 © UCB Spring 2025

Case study: The Internet

The Internet is the largest distributed system that exists!

Many different applications

– Email, web, P2P, etc.

Many different operating systems and devices

Many different network styles and technologies

– Wireless, wired, optical

How do we organize this mess

– Layering & end-to-end principle

Skype SSH NFS

Packet

Radio

Coaxial

cable

Fiber

optic

Application

Transmission

Media

HTTP

22.37Crooks & Zaharia CS162 © UCB Spring 2025

The Internet: Layers, Layers, Layers

Introduce intermediate layers that provide set of abstractions for various network functionality &
technologies

– A new app/media implemented only once

Goal: Reliable communication channels on which to build distributed applications

Skype SSH NFS

Packet

radio

Coaxial

cable

Fiber

optic

Application

Transmission

Media

HTTP

Intermediate

layers

“Narrow Waist”

Internet Protocol

22.38Crooks & Zaharia CS162 © UCB Spring 2025

The Internet: hourglass model

Data Link

Physical

Applications

The Hourglass Model

Waist

“Narrow waist” facilitates
interoperability

Layers “abstract” away hardware
so that upper layers are agnostic
to lower layers

=> Sound familiar?

SMTP HTTP NTPDNS

TCP UDP

IP

Ethernet SONET 802.11

Transport

FiberCopper Radio

22.39Crooks & Zaharia CS162 © UCB Spring 2025

The Internet: Implications of Hourglass

Single Internet-layer module (IP):

Allows arbitrary networks to interoperate

– Any network technology that supports IP can exchange packets

Allows applications to function on all networks

– Applications that can run on IP can use any network

Supports simultaneous innovations above and below IP

– But changing IP itself, i.e., IPv6, very involved

22.40Crooks & Zaharia CS162 © UCB Spring 2025

The Internet: Drawbacks of Layering

Layer N may duplicate layer N-1 functionality

– E.g., error recovery to retransmit lost data

Layers may need same information

– E.g., timestamps, maximum transmission unit size

Layering can hurt performance

– E.g., hiding details about what is really going on

Some layers are not always cleanly separated

– Inter-layer dependencies for performance reasons

– Some dependencies in standards (header checksums)

22.41Crooks & Zaharia CS162 © UCB Spring 2025

End-To-End Argument

Hugely influential paper:

– “End-to-End Arguments in System Design” by Saltzer, Reed, and Clark (‘84)

“Sacred Text” of the Internet

– Endless disputes about what it means

– Everyone cites it as supporting their position

Simple Message: Some types of network functionality can only be correctly implemented
end-to-end

– Reliability, security, etc.

Hosts cannot rely on the network help to meet requirement, so must implement it
themselves

22.42Crooks & Zaharia CS162 © UCB Spring 2025

Example: Reliable File Transfer

Solution 1: make each step reliable, and then concatenate them

Solution 2: end-to-end check and try again if necessary

OS

Appl.

OS

Appl.

Host A Host B

OK

22.43Crooks & Zaharia CS162 © UCB Spring 2025

Discussion

Solution 1 is incomplete

What happens if memory is corrupted?

Receiver has to do the check anyway!

Solution 2 is complete

Full functionality can be entirely implemented at application layer with no need
for reliability from lower layers

Is there any need to implement reliability at lower layers?

Well, it could be more efficient

22.44Crooks & Zaharia CS162 © UCB Spring 2025

End-to-End Principle

Implementing complex functionality in the network:

- Doesn’t always reduce host implementation complexity

- Does increase network complexity

- Probably imposes delay and overhead on all applications, even if they don’t
need functionality

However, implementing in network can enhance performance in some cases

– e.g., very lossy link

22.45Crooks & Zaharia CS162 © UCB Spring 2025

Conservative Interpretation of E2E

Don’t implement a function at the lower levels of the system unless it can
be completely implemented at this level

22.46Crooks & Zaharia CS162 © UCB Spring 2025

Moderate Interpretation

Think twice before implementing functionality in the network

If hosts can implement functionality correctly, implement it in a lower layer only
as a performance enhancement

But do so only if it does not impose burden on applications that do not require
that functionality

	Default Section
	Slide 1: CS162 Operating Systems and Systems Programming Lecture 22 Distributed File Systems & Internet
	Slide 2: Recall: The promise of distributed systems
	Slide 4: Recall: Message Passing
	Slide 5: Recall: Data Representation
	Slide 6: Remote Procedure Call (RPC)
	Slide 7: Remote Procedure Call (RPC)
	Slide 8: RPC Information Flow
	Slide 9: RPC Implementation
	Slide 10: RPC Details (1/3)
	Slide 11: RPC Details (2/3)
	Slide 12: RPC Details (3/3)
	Slide 13: Problem with RPC: Non-Atomic Failures
	Slide 14: Problem with RPC: Performance
	Slide 15: Topic Roadmap
	Slide 16: Distributed File Systems
	Slide 17: Virtual Filesystem Switch (VFS)
	Slide 20: Simple Distributed File System
	Slide 21: Use of caching to reduce network load
	Slide 22: Dealing with Failures
	Slide 23: Stateless Protocol
	Slide 24: Case Study: Network File System (NFS)
	Slide 25: NFS Continued
	Slide 26: NFS Continued
	Slide 27: NFS Continued
	Slide 28: NFS Continued
	Slide 29: NFS Continued
	Slide 30: NFS Architecture
	Slide 31: NFS Cache consistency
	Slide 32: NFS Cache consistency
	Slide 33: Sequential Ordering Constraints
	Slide 34: Sequential Ordering Constraints
	Slide 35: NFS Pros and Cons
	Slide 36: Case study: The Internet
	Slide 37: The Internet: Layers, Layers, Layers
	Slide 38: The Internet: hourglass model
	Slide 39: The Internet: Implications of Hourglass
	Slide 40: The Internet: Drawbacks of Layering
	Slide 41: End-To-End Argument
	Slide 42: Example: Reliable File Transfer
	Slide 43: Discussion
	Slide 44: End-to-End Principle
	Slide 45: Conservative Interpretation of E2E
	Slide 46: Moderate Interpretation

