
CS162
Operating Systems and
Systems Programming

Lecture 20

File Systems & Reliability

Professor Natacha Crooks & Matei Zaharia

https://cs162.org/

Slides based on prior slide decks from David Culler, Ion Stoica, John Kubiatowicz, Alison Norman and Lorenzo Alvisi

20.2Crooks & Zaharia CS162 © UCB Spring 2025

Recall: Unix File System

Superblock object: information about file system

Free bitmaps: what is allocated/not allocated

Inode object: represents a specific file on disk

Dentry object: directory entry, single component of a path

Blocks: How files are stored on disk

20.3Crooks & Zaharia CS162 © UCB Spring 2025

Recall: Inode Data Structure

20.4Crooks & Zaharia CS162 © UCB Spring 2025

Recall: Fast File System

Same inode structure as in BSD 4.1

– Same file header and triply indirect blocks like we just studied

– Some changes to block sizes from 10244096 bytes for performance

Optimization for Performance and Reliability:

– Distribute inodes among different tracks to be closer to data

– Uses bitmap allocation in place of freelist

– Attempt to place files contiguously (look for big empty ranges when appending)

– 10% reserved disk space

– Skip-sector positioning

20.6Crooks & Zaharia CS162 © UCB Spring 2025

Plan for Today

Quick examples of two other file systems

Buffer cache (memory cache for FS)

Reliability

20.7Crooks & Zaharia CS162 © UCB Spring 2025

Other File Systems

FAT:
File Allocation Table

(MS-DOS,1977)

Windows NTFS

20.8Crooks & Zaharia CS162 © UCB Spring 2025

File 31, Block 2File 31, Block 2

FAT (File Allocation Table) File System

Example:

file_read 31, < 2, x >

– Index into FAT with file number

– Follow linked list to block

– Read the block from disk
into memory

File 31, Block 0

File 31, Block 1

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

File number

memory

20.9Crooks & Zaharia CS162 © UCB Spring 2025

FAT (File Allocation Table)

File is a collection of disk blocks

FAT is linked list 1-1 with blocks

File number is index of root of its block list

File offset: block number + offset in block

Follow list to get block number

Unused blocks marked free

– Could require scan to find

– Or, could use a free list

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

File number

memory

free

20.10Crooks & Zaharia CS162 © UCB Spring 2025

FAT (File Allocation Table)

file_write(31, < 3, y >)

– Grab free block

– Linking them into file

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

File number

memory

free

File 31, Block 3

20.12Crooks & Zaharia CS162 © UCB Spring 2025

Directories in FAT

A directory is a file containing <file_name: file_number> mappings

In FAT: file attributes are kept in directory (!!!)

– Not directly associated with the file itself

Each directory has a linked list of entries

– Requires linear search to find an entry

Root directory is always at block 2

20.13Crooks & Zaharia CS162 © UCB Spring 2025

File 31, Block 3

FAT Discussion

Suppose you start with the file number:

• Time to find first block?

• Sequential access?

• Random access?

• Fragmentation?

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

File #1

memory

free

File #2

20.14Crooks & Zaharia CS162 © UCB Spring 2025

Windows New Technology File System (NTFS)

Default on recent Windows systems

Variable length extents (typically one or more blocks)

Master File Table

– Metadata area with 1KB long entries

– Every entry is (mostly) a sequence of <attribute:value>

Each entry in MFT contains metadata and:

– File’s data directly (for small files)

– A list of extents (start block, size) for file’s data

– For very big files: pointers to other MFT entries with more extent lists

20.15Crooks & Zaharia CS162 © UCB Spring 2025

NTFS

http://ntfs.com/ntfs-mft.htm

20.16Crooks & Zaharia CS162 © UCB Spring 2025

NTFS Small File: Data stored with Metadata

Create time, modify time, access time,
Owner id, security specifier, flags (RO, hidden, sys)

data attribute

Attribute list

20.17Crooks & Zaharia CS162 © UCB Spring 2025

NTFS Medium File: Extents for File Data

20.18Crooks & Zaharia CS162 © UCB Spring 2025

NTFS Large File: Pointers to Other MFT Entries

20.19Crooks & Zaharia CS162 © UCB Spring 2025

Directories in NTFS

Implemented as B-Trees

File's number identifies its entry in MFT

MFT entry for each file also has a file name attribute

– Hard links require multiple file name attributes in the MFT entry

20.20Crooks & Zaharia CS162 © UCB Spring 2025

Buffer Caches

Kernel must copy disk blocks to main memory to access their contents and write them
back if modified

Key Idea: Exploit temporal locality by caching disk data in memory

– Disk blocks: Mapping from block address→disk content

– Name translations: Mapping from paths→inodes

Buffer Cache: Memory used to cache FS data, including disk blocks and metadata

– Can contain “dirty” blocks (with modifications not on disk)

20.21Crooks & Zaharia CS162 © UCB Spring 2025

File System Buffer Cache

OS implements a
cache of disk blocks
for efficient access to
data, directories,
inodes, freemap

Memory

Disk
Data blocks

Dir Data blocks

iNodes

Free bitmap

file

desc

PCB
Reading

Writing

Blocks

State free free

20.22Crooks & Zaharia CS162 © UCB Spring 2025

File System Buffer Cache: open

Memory

Blocks

State

Disk

Dir Data blocks

iNodes

Free bitmap

file

desc

PCB
Reading

Writing

free freerddir

Data blocks

Directory lookup
(repeat as needed):

– load block of
directory

– search for map

20.23Crooks & Zaharia CS162 © UCB Spring 2025

File System Buffer Cache: open

Directory lookup
(repeat as needed):

– load block of
directory

– search for map

Create reference in
open file descriptor

Memory

Blocks

State

Disk
Data blocks

Dir Data blocks

iNodes

Free bitmap

file

desc

PCB
Reading

Writing

free inodedir rd

20.24Crooks & Zaharia CS162 © UCB Spring 2025

File System Buffer Cache: read?

Read Process

– From inode,
traverse index
structure to find
data block

– load data block

– copy all or part to
read data buffer

Memory

Blocks

State

Disk
Data blocks

Dir Data blocks

iNodes

Free bitmap

file

desc

PCB
Reading

Writing

free dir inode rd

20.25Crooks & Zaharia CS162 © UCB Spring 2025

File System Buffer Cache: write?

Similar to read, but
may allocate new
blocks (update free
map); blocks later
need to be written
back to disk; inode?

Memory

Blocks

State

Disk
Data blocks

Dir Data blocks

iNodes

Free bitmap

file

desc

PCB
Reading

Writing

free dir inode dirty

20.26Crooks & Zaharia CS162 © UCB Spring 2025

File System Buffer Cache: Eviction?

Blocks being written
back to disk go
through a transient
state

Memory

Blocks

State

Disk
Data blocks

Dir Data blocks

iNodes

Free bitmap

file

desc

PCB
Reading

Writing

free dir dirty inode dirty

20.27Crooks & Zaharia CS162 © UCB Spring 2025

Buffer Cache Replacement Policy

Preferred policy? LRU
– Can afford overhead full LRU implementation
– Advantages:

» Works very well for name translation
» Works well in general as long as memory is big enough to accommodate a host’s

working set of files.
– Disadvantages:

» Fails when some application scans through file system, thereby flushing the cache
with data used only once

» Example: find . –exec grep foo {} \;

Other Replacement Policies?
– Some systems allow applications to request other policies
– Example, ‘Use Once’:

» File system can discard blocks as soon as they are used

20.28Crooks & Zaharia CS162 © UCB Spring 2025

Buffer Cache Size

How much memory should the OS allocate to the buffer cache vs virtual memory?

– Too much memory to the file system cache  won’t be able to run many
applications

– Too little memory to file system cache  many applications may run slowly (disk
caching not effective)

– Solution: adjust boundary dynamically so that the disk access rates for paging
and file access are balanced

20.29Crooks & Zaharia CS162 © UCB Spring 2025

File System Prefetching

Read Ahead Prefetching: fetch sequential blocks early

– Key Idea: exploit fact that most common file access is sequential by prefetching
subsequent disk blocks ahead of current read request

– Elevator algorithm can efficiently interleave prefetches from concurrent
applications

How much to prefetch?

– Too much prefetching imposes delays on requests by other applications

– Too little prefetching causes many seeks (and rotational delays) among
concurrent file requests

20.30Crooks & Zaharia CS162 © UCB Spring 2025

Delayed Writes

Buffer cache is a writeback cache

write() copies data from user space to kernel buffer cache

– Quick return to user space

read() is fulfilled by the cache, so reads see the results of writes

– Even if the data has not reached disk

When does data from a write syscall finally reach disk?

– When the buffer cache is full (e.g., we need to evict something)

– When the buffer cache is flushed periodically (in case we crash)

20.31Crooks & Zaharia CS162 © UCB Spring 2025

Advantage of Delayed Writes

Latency: return to user quickly without writing to disk!

Disk scheduler can efficiently order lots of requests

– Elevator Algorithm can rearrange writes to avoid random seeks

Delay block allocation:

– May be able to allocate multiple blocks at same time for file, keep them contiguous

Some files never actually make it all the way to disk

– Many short-lived files!

20.32Crooks & Zaharia CS162 © UCB Spring 2025

Buffer Caching vs. Demand Paging

Replacement Policy?

– Demand Paging: LRU is infeasible; use approximation (like NRU/Clock)

– Buffer Cache: LRU is OK

Eviction Policy?

– Demand Paging: evict not-recently-used pages when memory is close to full

– Buffer Cache: write back dirty blocks periodically, even if used recently

» Why? To minimize data loss in case of a crash

20.33Crooks & Zaharia CS162 © UCB Spring 2025

Dealing with Persistent State

Buffer cache writes back dirty blocks periodically, even if used recently

– Why? To minimize data loss in case of a crash

– Linux does periodic flush every 30 seconds

– Applications can use fsync to force flushing a file

Not foolproof! Can still crash with dirty blocks in the cache

– What if the dirty block was for a directory?

» Lose pointer to file’s inode (leak space)

» File system now in inconsistent state

20.34Crooks & Zaharia CS162 © UCB Spring 2025

Boom!

20.35Crooks & Zaharia CS162 © UCB Spring 2025

Important “ilities”

Availability
The probability that the system can accept and process requests

Durability
The ability of a system to recover data despite faults

Reliability
The ability of a system or component to perform its required functions under stated

conditions for a specified period of time (IEEE definition)

20.36Crooks & Zaharia CS162 © UCB Spring 2025

File System Reliability

What can happen if disk loses power or software crashes?

– Some operations in progress may complete

– Some operations in progress may be lost

– Overwrite of a block may only partially complete

File system needs durability (as a minimum!)

– Data previously stored can be retrieved (maybe after some recovery step),
regardless of failure

But durability is not quite enough…!

20.37Crooks & Zaharia CS162 © UCB Spring 2025

Storage Reliability Problem

Single logical file operation can involve updates to multiple physical disk blocks

– inode, indirect block, data block, bitmap, …

– With sector remapping, single update to physical disk block can require multiple
(even lower level) updates to sectors

At a physical level, operations complete one at a time

– Want concurrent operations for performance

How do we guarantee consistency regardless of when crash occurs?

20.38Crooks & Zaharia CS162 © UCB Spring 2025

Threats to Reliability

Interrupted Operation

– Crash or power failure in the middle of a series of related updates may leave stored
data in an inconsistent state

– Example: transfer funds from one bank account to another

– What if transfer is interrupted after withdrawal and before deposit?

Loss of stored data

– Failure of non-volatile storage media may cause previously stored data to
disappear or be corrupted

20.39Crooks & Zaharia CS162 © UCB Spring 2025

Two Reliability Approaches

Careful Ordering and Recovery

FAT & FFS + (fsck)

Each step builds structure,

Data block  inode  free  directory

Last step links it in to rest of FS

Recover scans structure looking for
incomplete actions

Versioning and Copy-on-Write

ZFS, …

Version files at some granularity

Create new structure linking back to
unchanged parts of old

Last step is to declare that the new version
is ready

20.40Crooks & Zaharia CS162 © UCB Spring 2025

Reliability Approach #1: Careful Ordering

Sequence operations in a specific order

– Careful design to allow sequence to be interrupted safely

Post-crash recovery

– Read data structures to see if there were any operations in progress

– Clean up/finish as needed

Approach taken by

– FAT and FFS (fsck) to protect filesystem structure/metadata

– Many app-level recovery schemes (e.g., Word, emacs autosaves)

20.41Crooks & Zaharia CS162 © UCB Spring 2025

Berkeley FFS: Create a File

Normal operation:

• Allocate data block

• Write data block

• Allocate inode

• Write inode block

• Update bitmap of free blocks and
inodes

• Update directory with file name →
inode number

• Update modify time for directory

Recovery:

• Scan inode table

• If any unlinked files (not in any
directory), delete or put in lost &
found dir

• Compare free block bitmap against
inode trees

• Scan directories for missing
update/access times

Time proportional to disk size

20.42Crooks & Zaharia CS162 © UCB Spring 2025

Reliability Approach #2: Copy on Write File Layout

Create a new version of the file with the updated data

– Reuse blocks that don’t change much of what is already in place

– Only point to the new version when fully done writing it

Seems expensive!

– But updates can be batched, and many disk writes can occur in parallel

Approach taken in network file server appliances

– NetApp’s Write Anywhere File Layout (WAFL)

– ZFS (Sun/Oracle) and OpenZFS

20.43Crooks & Zaharia CS162 © UCB Spring 2025

More General Reliability Solutions

Use transactions for atomic updates

– Ensure that multiple related updates are performed atomically

– i.e., if a crash occurs in the middle, the state of the systems reflects either all or
none of the updates

– Most modern file systems use transactions internally to update filesystem
structures and metadata

– Many applications implement their own transactions

• Provide redundancy for media failures

– Redundant representation on media (Error Correcting Codes)

– Replication across media (e.g., RAID disk array)

20.44Crooks & Zaharia CS162 © UCB Spring 2025

Transactions

Closely related to critical sections for manipulating shared data structures

They extend concept of atomic update from memory to stable storage

– Atomically update multiple persistent data structures

Many ad-hoc approaches

– FFS carefully ordered the sequence of updates so that if a crash occurred
while manipulating directory or inodes the disk scan on reboot would detect
and recover the error (fsck)

– Applications use temporary files and rename

20.45Crooks & Zaharia CS162 © UCB Spring 2025

Key Concept: Transaction

A transaction is an atomic sequence of reads and writes that takes the system from
one consistent state to another.

Recall: Code in a critical section appears atomic to other threads

Transactions extend the concept of atomic updates from memory to persistent storage

consistent state 1 consistent state 2
transaction

20.46Crooks & Zaharia CS162 © UCB Spring 2025

Typical Structure

Begin a transaction – get transaction id

Do a bunch of updates
– If any fail along the way, roll-back

– Or, if any conflicts with other transactions, roll-back

Commit the transaction

20.47Crooks & Zaharia CS162 © UCB Spring 2025

“Classic” Example: Transactions in SQL

UPDATE accounts SET balance = balance - 100.00 WHERE
name = 'Alice';

UPDATE branches SET balance = balance - 100.00 WHERE
name = (SELECT branch_name FROM accounts WHERE name
= 'Alice');

UPDATE accounts SET balance = balance + 100.00 WHERE
name = 'Bob';

UPDATE branches SET balance = balance + 100.00 WHERE
name = (SELECT branch_name FROM accounts WHERE name
= 'Bob');

BEGIN; --BEGIN TRANSACTION

COMMIT; --COMMIT WORK

Transfer $100 from Alice’s account to Bob’s

20.48Crooks & Zaharia CS162 © UCB Spring 2025

Useful Tool: a Log

One simple action is atomic – write/append a basic item

Use that to seal the commitment to a whole series of actions

G
e
t

1
0
$
 f
ro

m
 a

cc
o
u
n
t

A

G
e
t

7
$
 f
ro

m
 a

cc
o
u
n
t

B

G
e
t

1
3
$
 f
ro

m
 a

cc
o
u
n
t

C

P
u
t

1
5
$
 i
n
to

 a
cc

o
u
n
t

X

P
u
t

1
5
$

in
to

 a
cc

o
u
n
t

Y

S
ta

rt
 T

ra
n
 N

C
o
m

m
it
 T

ra
n
 N

20.49Crooks & Zaharia CS162 © UCB Spring 2025

Transactional File Systems

Better reliability through use of log

– Changes to all FS data structures are treated as transactions

– A transaction is committed once it is fully written to the log

» Data forced to disk for reliability

» Process can be accelerated with NVRAM

– Although the actual file system data structures may not be updated immediately,
data preserved in the log and replayed to recover

Difference between “Log Structured” and “Journaled” file systems

– In a Log Structured filesystem, data stays in log form

– In a Journaled filesystem, log only used for recovery

20.50Crooks & Zaharia CS162 © UCB Spring 2025

Journaling File Systems

Don’t modify data structures on disk directly

Write each update as transaction recorded in a log

– Commonly called a journal or intention list

– Also maintained on disk (allocate specific blocks for it)

Once changes are in the log, they can be safely applied to other data structures

– E.g. modify inode pointers and directory entries

Linux took original FFS-like file system (ext2) and added a journal to get ext3!

– Some options: whether or not to write all data to journal or just metadata

20.51Crooks & Zaharia CS162 © UCB Spring 2025

Creating a File (No Journaling Yet)

Find free data block(s)

Find free inode entry

Find dirent insertion point

Write bitmap (i.e., mark used)

Write inode entry to point to block(s)

Write dirent to point to inode

Data blocks

Free space

map

…

Inode table

Directory

entries

20.52Crooks & Zaharia CS162 © UCB Spring 2025

Creating a File (With Journaling)

Find free data block(s)

Find free inode entry

Find dirent insertion point

[log] Write map (i.e., mark used)

[log] Write inode entry to point to block(s)

[log] Write dirent to point to inode

Data blocks

Free space

map

…

Inode table

Directory

entries

Log: in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t

co
m

m
it

20.53Crooks & Zaharia CS162 © UCB Spring 2025

After Commit, Eventually Replay Transaction

All accesses to the file system first looks in the log

– Actual on-disk data structure might be stale

Eventually, copy changes to disk and discard
transaction from the log

Data blocks

Free space

map

…

Inode table

Directory

entries

Log: in non-volatile storage (Flash or on Disk)

head

pendingdone

st
ar

t

co
m

m
it

tail tail tail tail tail

20.54Crooks & Zaharia CS162 © UCB Spring 2025

Crash Recovery: Discard Partial Transactions

Upon recovery, scan the log

Detect transaction start with no commit

Discard log entries

Disk remains unchanged

Data blocks

Free space

map

…

Inode table

Directory

entries

Log: in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t

20.55Crooks & Zaharia CS162 © UCB Spring 2025

Scan log, find start

Find matching commit

Redo it as usual

Or just let it happen later

Data blocks

Free space

map

…

Inode table

Directory

entries

Log: in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t

co
m

m
it

Crash Recovery: Keep Complete Transactions

20.56Crooks & Zaharia CS162 © UCB Spring 2025

Journaling Summary

Why go through all this trouble?

• Updates atomic, even if we crash:

– Update either gets fully applied or discarded

– All physical operations treated as a logical unit

Isn’t this expensive?

• Yes! We're now writing all data twice (once to log, once to actual data blocks in
target file)

• Modern filesystems journal metadata updates only

– Record modifications to file system data structures

– But apply updates to a file’s contents directly

	Default Section
	Slide 1: CS162 Operating Systems and Systems Programming Lecture 20 File Systems & Reliability
	Slide 2: Recall: Unix File System
	Slide 3: Recall: Inode Data Structure
	Slide 4: Recall: Fast File System
	Slide 6: Plan for Today
	Slide 7: Other File Systems
	Slide 8: FAT (File Allocation Table) File System
	Slide 9: FAT (File Allocation Table)
	Slide 10: FAT (File Allocation Table)
	Slide 12: Directories in FAT
	Slide 13: FAT Discussion
	Slide 14: Windows New Technology File System (NTFS)
	Slide 15: NTFS
	Slide 16: NTFS Small File: Data stored with Metadata
	Slide 17: NTFS Medium File: Extents for File Data
	Slide 18: NTFS Large File: Pointers to Other MFT Entries
	Slide 19: Directories in NTFS
	Slide 20: Buffer Caches
	Slide 21: File System Buffer Cache
	Slide 22: File System Buffer Cache: open
	Slide 23: File System Buffer Cache: open
	Slide 24: File System Buffer Cache: read?
	Slide 25: File System Buffer Cache: write?
	Slide 26: File System Buffer Cache: Eviction?
	Slide 27: Buffer Cache Replacement Policy
	Slide 28: Buffer Cache Size
	Slide 29: File System Prefetching
	Slide 30: Delayed Writes
	Slide 31: Advantage of Delayed Writes
	Slide 32: Buffer Caching vs. Demand Paging
	Slide 33: Dealing with Persistent State
	Slide 34: Boom!
	Slide 35: Important “ilities”
	Slide 36: File System Reliability
	Slide 37: Storage Reliability Problem
	Slide 38: Threats to Reliability
	Slide 39: Two Reliability Approaches
	Slide 40: Reliability Approach #1: Careful Ordering
	Slide 41: Berkeley FFS: Create a File
	Slide 42: Reliability Approach #2: Copy on Write File Layout
	Slide 43: More General Reliability Solutions
	Slide 44: Transactions
	Slide 45: Key Concept: Transaction
	Slide 46: Typical Structure
	Slide 47: “Classic” Example: Transactions in SQL
	Slide 48: Useful Tool: a Log
	Slide 49: Transactional File Systems
	Slide 50: Journaling File Systems
	Slide 51: Creating a File (No Journaling Yet)
	Slide 52: Creating a File (With Journaling)
	Slide 53: After Commit, Eventually Replay Transaction
	Slide 54: Crash Recovery: Discard Partial Transactions
	Slide 55: Crash Recovery: Keep Complete Transactions
	Slide 56: Journaling Summary

