
CS162
Operating Systems and
Systems Programming

Lecture 2

Four Fundamental OS Concepts

August 31st, 2020

Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 2.28/31/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: What is an Operating System?

� Referee

– Manage protection, isolation, and sharing of resources

» Resource allocation and communication

� Illusionist

– Provide clean, easy-to-use abstractions of physical resources

» Infinite memory, dedicated machine

» Higher level objects: files, users, messages

» Masking limitations, virtualization

� Glue

– Common services

» Storage, Window system, Networking

» Sharing, Authorization

» Look and feel

Lec 2.38/31/20 Kubiatowicz CS162 © UCB Fall 2020

PgTbl

& TLB Storage

Networks

Hardware

I/O Ctrlr

ISA

Operating System

Compiler

Recall: OS Protection

Processor Memory

Process 1

Threads

OS

Mem

Address Spaces Files Sockets

Process 2

Threads Address Spaces Files Sockets

Compiled

Program 1

System Libs

Compiled

Program 2

System Libs

Lec 2.48/31/20 Kubiatowicz CS162 © UCB Fall 2020

PgTbl

& TLB Storage

Networks

Hardware

I/O Ctrlr

Compiler

Operating System

Recall: OS Protection

Processor Memory

Process 1

Threads

OS

Mem

Address Spaces Files Sockets

Process 2

Threads Address Spaces Files Sockets

Compiled

Program 1

System Libs

Compiled

Program 2

System Libs

Segmentation fault
(core dumped)

ISA

Lec 2.58/31/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: HW Functionality  great complexity!

Intel Skylake-X I/O Configuration

Direct Media Interface

(3.93 GBytes/sec)

Really High Speed

I/O (e.g. graphics)

Memory Channels

(High BW DRAM)

High-Speed I/O

devices (PCI Exp)

Disks (8 x SATA)

Slower I/O (USB)

Integrated Ethernet

PCI/e Drives

HD Audio

RAID 0/1/5/10

Smart Connect

(autoupdate)

Intel Management Engine

(ME) and BIOS Support

[remote management]

Lec 2.68/31/20 Kubiatowicz CS162 © UCB Fall 2020

0 20 40 60 80 100 120 140

Mouse Base Pairs

Modern Car

Mac OS X "Tiger"

Facebook

Windows Vista

Microsoft Office 2013

Windows 7

Linux 3.1 (recent)

Android

Firefox

Mars Curiosity Rover

Linux 2.2.0

0 20 40 60 80 100 120 140

Mouse Base Pairs

Modern Car

Mac OS X "Tiger"

Facebook

Windows Vista

Microsoft Office 2013

Windows 7

Linux 3.1 (recent)

Android

Firefox

Mars Curiosity Rover

Linux 2.2.0

0 20 40 60 80 100 120 140

Mouse Base Pairs

Modern Car

Mac OS X "Tiger"

Facebook

Windows Vista

Microsoft Office 2013

Windows 7

Linux 3.1 (recent)

Android

Firefox

Mars Curiosity Rover

Linux 2.2.0

New Versions usually (much) larger older versions!

Recall: Increasing Software Complexity

Millions of Lines of Code
(source https://informationisbeautiful.net/visualizations/million-lines-of-code/)

Cars getting really complex!

Lec 2.78/31/20 Kubiatowicz CS162 © UCB Fall 2020

Complexity leaks into OS if not properly designed:

� Third-party device drivers are one of the
most unreliable aspects of OS

– Poorly written by non-stake-holders

– Ironically, the attempt to provide clean
abstractions can lead to crashes!

� Holes in security model or bugs in OS lead
to instability and privacy breaches

– Great Example: Meltdown (2017)

» Extract data from protected kernel space!

� Version skew on Libraries can lead to
problems with application execution

� Data breaches, DDOS attacks, timing
channels….

– Heartbleed (SSL)

Lec 2.88/31/20 Kubiatowicz CS162 © UCB Fall 2020

� Processor → Thread

� Memory → Address Space

� Disks, SSDs, … → Files

� Networks → Sockets

� Machines → Processes

� OS as an Illusionist:

– Remove software/hardware quirks (fight complexity)

– Optimize for convenience, utilization, reliability, … (help the programmer)

� For any OS area (e.g. file systems, virtual memory, networking, scheduling):

– What hardware interface to handle? (physical reality)

– What’s software interface to provide? (nicer abstraction)

Application

Operating System

Hardware
Physical Machine Interface

Abstract Machine Interface

OS Abstracts Underlying Hardware to help Tame Complexity

Lec 2.98/31/20 Kubiatowicz CS162 © UCB Fall 2020

Today: Four Fundamental OS Concepts

� Thread: Execution Context

– Fully describes program state

– Program Counter, Registers, Execution Flags, Stack

� Address space (with or w/o translation)

– Set of memory addresses accessible to program (for read or write)

– May be distinct from memory space of the physical machine
(in which case programs operate in a virtual address space)

� Process: an instance of a running program

– Protected Address Space + One or more Threads

� Dual mode operation / Protection

– Only the “system” has the ability to access certain resources

– Combined with translation, isolates programs from each other and
the OS from programs

Lec 2.108/31/20 Kubiatowicz CS162 © UCB Fall 2020

L
o
a
d
 &

E
x
e
c
u
te M

e
m

o
ry

PC:

Processor

registers

0xFFF…

instructions

data

OS

heap

stack

OS Bottom Line: Run Programs

int main()

{ … ;

}

e
d

it
o

r

Program Source

foo.c

c
o

m
p

ile
r

Executable

a.out

data

instructions

� Write them and compile them

� Load instruction and data segments of
executable file into memory

� Create stack and heap

� “Transfer control to program”

� Provide services to program

� While protecting OS and program

0x000…

Lec 2.118/31/20 Kubiatowicz CS162 © UCB Fall 2020

Recall (61C): Instruction Fetch/Decode/Execute

The instruction cycle

PC:

Instruction fetch

Registers

ALU

Execute

Memory

instruction

Decode decode

next

data

Processor

Lec 2.128/31/20 Kubiatowicz CS162 © UCB Fall 2020

First OS Concept: Thread of Control

� Thread: Single unique execution context

– Program Counter, Registers, Execution Flags, Stack, Memory State

� A thread is executing on a processor (core) when it is resident in the processor registers

� Resident means: Registers hold the root state (context) of the thread:

– Including program counter (PC) register & currently executing instruction

» PC points at next instruction in memory

» Instructions stored in memory

– Including intermediate values for ongoing computations

» Can include actual values (like integers) or pointers to values in memory

– Stack pointer holds the address of the top of stack (which is in memory)

– The rest is “in memory”

� A thread is suspended (not executing) when its state is not loaded (resident) into the
processor

– Processor state pointing at some other thread

– Program counter register is not pointing at next instruction from this thread

– Often: a copy of the last value for each register stored in memory

Lec 2.138/31/20 Kubiatowicz CS162 © UCB Fall 2020

Fetch

Exec

R0

…

R31

F0

…

F30

PC

…

Data1

Data0

Inst237

Inst236

…

Inst5

Inst4

Inst3

Inst2

Inst1

Inst0

Addr 0

Addr 232-1

Recall (61C): What happens during program execution?

� Execution sequence:

– Fetch Instruction at PC

– Decode

– Execute (possibly using registers)

– Write results to registers/mem

– PC = Next Instruction(PC)

– Repeat

PC
PC
PC
PC

Lec 2.148/31/20 Kubiatowicz CS162 © UCB Fall 2020

Registers: RISC-V  x86

� cs61C does RISC-V. Will need to learn x86…

� Section will cover this architecture

Load/Store Arch (RISC-V)
with software conventions

Complex mem-mem arch (x86) with
specialized registers and “segments”

Lec 2.158/31/20 Kubiatowicz CS162 © UCB Fall 2020

Illusion of Multiple Processors

� Assume a single processor (core). How do we provide
the illusion of multiple processors?

– Multiplex in time!

� Threads are virtual cores

� Contents of virtual core (thread):

– Program counter, stack pointer

– Registers

� Where is “it” (the thread)?

– On the real (physical) core, or

– Saved in chunk of memory – called the Thread Control
Block (TCB)

vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time

vCPU3vCPU2vCPU1

Shared Memory

Programmer’s View

Lec 2.168/31/20 Kubiatowicz CS162 © UCB Fall 2020

Illusion of Multiple Processors (Continued)

� Consider:

– At T1: vCPU1 on real core, vCPU2 in memory

– At T2: vCPU2 on real core, vCPU1 in memory

� What happened?

– OS Ran [how?]

– Saved PC, SP, … in vCPU1's thread control block (memory)

– Loaded PC, SP, … from vCPU2's TCB, jumped to PC

� What triggered this switch?

– Timer, voluntary yield, I/O, other things we will discuss

vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time

T1 T2
vCPU3vCPU2vCPU1

Shared Memory

Programmer’s View

Lec 2.178/31/20 Kubiatowicz CS162 © UCB Fall 2020

Multiprogramming - Multiple Threads of Control

� Thread Control Block (TCB)

– Holds contents of registers when thread not running

– What other information?

� Where are TCBs stored?

– For now, in the kernel

� PINTOS? – read thread.h and thread.c

OS

Proc

1

Proc

2

Proc

n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

Lec 2.188/31/20 Kubiatowicz CS162 © UCB Fall 2020

Administrivia: Getting started
� Should be working on Homework 0 already!  Due Thursday (9/3)

– cs162-xx account, Github account, registration survey

– Vagrant and VirtualBox – VM environment for the course
» Consistent, managed environment on your machine

– Get familiar with all the cs162 tools, submit to autograder via git

� Start Project 0 tomorrow!
– To be done on your own – like a homework

� Slip days: I’d bank these and not spend them right away!
– No credit when late and run out of slip days

– You have 4 slip days for homework

– You have 4 slip days for projects

� Tomorrow is an optional REVIEW session for C
– Zoom link TBA

– May be recorded

� Friday (9/4) is drop day!
– Very hard to drop afterwards…

– Please drop sooner if you are going to anyway  Let someone else in!

Lec 2.198/31/20 Kubiatowicz CS162 © UCB Fall 2020

� Well, things are considerably different this term!

– Even different than last term, since we are starting off remote

– Everything is remote – all term!

� Most important thing: People, Interactions, Collaboration

– How do we recover collaboration without direct interaction?

– Remember group meetings?

� Must Work to bring everyone along (virtually)!

– Cameras are essential components of this class

» Must have a camera and plan to turn it on

» Will need it for exams, discussion sections, design reviews, OH

– Need to bring back personal interaction – even if it is virtual

» Humans not good at interacting text-only

» Virtual coffee hours with your group (camera turned on!)

– Required attendance at: Discussion sections, Design Reviews

» With camera turned on!

Review: Coping with COVID-19

Hello!

Hi!

Lec 2.208/31/20 Kubiatowicz CS162 © UCB Fall 2020

CS 162 Collaboration Policy

Explaining a concept to someone in another group

Discussing algorithms/testing strategies with other groups

Discussing debugging approaches with other groups

Searching online for generic algorithms (e.g., hash table)

Sharing code or test cases with another group

Copying OR reading another group’s code or test cases

Copying OR reading online code or test cases from prior years

Helping someone in another group to debug their code

� We compare all project submissions against prior year submissions and
online solutions and will take actions (described on the course overview
page) against offenders

� Don’t put a friend in a bad position by asking for help that they shouldn’t give!

Lec 2.218/31/20 Kubiatowicz CS162 © UCB Fall 2020

Second OS Concept: Address Space

0x000…

0xFFF…

code

Static Data

heap

stack
� Address space  the set of accessible addresses +

state associated with them:

– For 32-bit processor: 232 = 4 billion (109) addresses

– For 64-bit processor: 264 = 18 quintillion (1018) addresses

� What happens when you read or write to an address?

– Perhaps acts like regular memory

– Perhaps ignores writes

– Perhaps causes I/O operation

» (Memory-mapped I/O)

– Perhaps causes exception (fault)

– Communicates with another program

– ….

Lec 2.228/31/20 Kubiatowicz CS162 © UCB Fall 2020

Address Space: In a Picture

Processor

registers

PC:

0x000…

0xFFF…

Code Segment

Static Data

heap

stack

instruction

SP:

� What’s in the code segment? Static data segment?

� What’s in the Stack Segment?

– How is it allocated? How big is it?

� What’s in the Heap Segment?

– How is it allocated? How big?

Lec 2.238/31/20 Kubiatowicz CS162 © UCB Fall 2020

Previous discussion of threads: Very Simple Multiprogramming

� All vCPU's share non-CPU resources

– Memory, I/O Devices

� Each thread can read/write memory

– Perhaps data of others

– can overwrite OS ?

� Unusable?

� This approach is used in

– Very early days of computing

– Embedded applications

– MacOS 1-9/Windows 3.1 (switch only with voluntary yield)

– Windows 95-ME (switch with yield or timer)

� However it is risky…

vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time

Lec 2.248/31/20 Kubiatowicz CS162 © UCB Fall 2020

Simple Multiplexing has no Protection!

� Operating System must protect itself from user programs

– Reliability: compromising the operating system generally causes it to crash

– Security: limit the scope of what threads can do

– Privacy: limit each thread to the data it is permitted to access

– Fairness: each thread should be limited to its appropriate share of system
resources (CPU time, memory, I/O, etc)

� OS must protect User programs from one another

– Prevent threads owned by one user from impacting threads owned by
another user

– Example: prevent one user from stealing secret information from another
user

Lec 2.258/31/20 Kubiatowicz CS162 © UCB Fall 2020

What can the hardware do to help the
OS protect itself from programs???

Lec 2.268/31/20 Kubiatowicz CS162 © UCB Fall 2020

Simple Protection: Base and Bound (B&B)

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

0000…

1100…

0100…

Bound

1100…

1000…

Base

>=

<

Program

address

0010…

1010…

Lec 2.278/31/20 Kubiatowicz CS162 © UCB Fall 2020

Simple Protection: Base and Bound (B&B)

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

0000…

1100…

0100…

Bound

1100…

1000…

Base

>=

<

Program

address

0010…

1010…

� Still protects OS and isolates program

� Requires relocating loader

� No addition on address path

Addresses translated

when program loaded

Lec 2.288/31/20 Kubiatowicz CS162 © UCB Fall 2020

61C Review: Relocation

� Compiled .obj file linked together in an .exe

� All address in the .exe are as if it were loaded at memory
address 00000000

� File contains a list of all the addresses that need to be
adjusted when it is “relocated” to somewhere else.

Lec 2.298/31/20 Kubiatowicz CS162 © UCB Fall 2020

Simple address translation with Base and Bound

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

0000…

Program

address

Base Address

Bound <

1000…

1100…
0100…

� Hardware relocation

� Can the program touch OS?

� Can it touch other programs?

0010…
0010…

Addresses translated

on-the-fly

1010…

0100…

Lec 2.308/31/20 Kubiatowicz CS162 © UCB Fall 2020

x86 – segments and stacks

CS EIP

SS ESP

DS

ECXES

EDX

ESI

EDI

EAX

EBX

code

static data

heap

stack

code

static data

heap

stack

CS:
EIP:

SS:
ESP:

Processor Registers

Start address, length and
access rights associated with
each segment register

Lec 2.318/31/20 Kubiatowicz CS162 © UCB Fall 2020

Another idea: Address Space Translation

� Program operates in an address space that is distinct from

the physical memory space of the machine

Processor Memory

0x000…

0xFFF…

translator

Registers

Lec 2.328/31/20 Kubiatowicz CS162 © UCB Fall 2020

Paged Virtual Address Space

� What if we break the entire virtual address space into equal size chunks
(i.e., pages) have a base for each?

� All pages same size, so easy to place each page in memory!

� Hardware translates address using a page table

– Each page has a separate base

– The “bound” is the page size

– Special hardware register stores pointer to page table

– Treat memory as page size frames and put any page into any frame …

� Another cs61C review…

Lec 2.338/31/20 Kubiatowicz CS162 © UCB Fall 2020

Paged Virtual Address

� Instructions operate on virtual addresses

– Instruction address, load/store data address

� Translated to a physical address through a Page Table by the hardware

� Any Page of address space can be in any (page sized) frame in memory

– Or not-present (access generates a page fault)

� Special register holds page table base address (of the process)

Processor

Registers Page Table

Memory

<Virtual Address> =

<Page #> <Page Offset>

Page (eg, 4 kb)

<Page #>

<Frame Addr>

<Page Offset>
instruction

PT Addr

Lec 2.348/31/20 Kubiatowicz CS162 © UCB Fall 2020

Third OS Concept: Process

� Definition: execution environment with Restricted Rights

– (Protected) Address Space with One or More Threads

– Owns memory (address space)

– Owns file descriptors, file system context, …

– Encapsulate one or more threads sharing process resources

� Application program executes as a process

– Complex applications can fork/exec child processes [later!]

� Why processes?

– Protected from each other!

– OS Protected from them

– Processes provides memory protection

� Fundamental tradeoff between protection and efficiency

– Communication easier within a process

– Communication harder between processes

Lec 2.358/31/20 Kubiatowicz CS162 © UCB Fall 2020

Single and Multithreaded Processes

� Threads encapsulate concurrency:

– “Active” component

� Address spaces encapsulate protection:

– “Passive” component

– Keeps buggy programs from crashing
the system

� Why have multiple threads per address
space?

– Parallelism: take advantage of actual
hardware parallelism (e.g. multicore)

– Concurrency: ease of handling I/O and
other simultaneous events

Lec 2.368/31/20 Kubiatowicz CS162 © UCB Fall 2020

Protection and Isolation

� Why Do We Need Processes??

– Reliability: bugs can only overwrite memory of process they are in

– Security and privacy: malicious or compromised process can’t read or write
other process’ data

– (to some degree) Fairness: enforce shares of disk, CPU

� Mechanisms:

– Address translation: address space only contains its own data

– BUT: why can’t a process change the page table pointer?

» Or use I/O instructions to bypass the system?

– Hardware must support privilege levels

Lec 2.378/31/20 Kubiatowicz CS162 © UCB Fall 2020

Fourth OS Concept: Dual Mode Operation

� Hardware provides at least two modes (at least 1 mode bit):

1. Kernel Mode (or “supervisor” mode)

2. User Mode

� Certain operations are prohibited when running in user mode

– Changing the page table pointer, disabling interrupts, interacting directly w/
hardware, writing to kernel memory

� Carefully controlled transitions between user mode and kernel mode

– System calls, interrupts, exceptions

Lec 2.388/31/20 Kubiatowicz CS162 © UCB Fall 2020

For example: UNIX System Structure

User Mode

Kernel Mode

Hardware

Applications

Standard Libs

Lec 2.398/31/20 Kubiatowicz CS162 © UCB Fall 2020

User/Kernel (Privileged) Mode

User Mode

Kernel Mode

Full HW accessLimited HW access

exec

syscall

exit

rtn

interrupt

rfi

exception

Lec 2.408/31/20 Kubiatowicz CS162 © UCB Fall 2020

Additional Layers of Protection for Modern Systems

� Additional layers of protection through virtual machines or containers

– Run a complete operating system in a virtual machine

– Package all the libraries associated with an app into a container for execution

� More on these ideas later in the class

Lec 2.418/31/20 Kubiatowicz CS162 © UCB Fall 2020

Tying it together: Simple B&B: OS loads process

OS

Proc

1

Proc

2

Proc

n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base xxxx …

xxxx…Bound

xxxx…uPC

regs

sysmode

…

1

PC

0000…

FFFF…

Lec 2.428/31/20 Kubiatowicz CS162 © UCB Fall 2020

Simple B&B: OS gets ready to execute process

� Privileged Inst: set
special registers

� RTU (Return To
Usermode)

OS

Proc

1

Proc

2

Proc

n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100…Bound

0001…uPC

regs

sysmode

…

1

PC

0000…

FFFF…

00FF…

RTU

Lec 2.438/31/20 Kubiatowicz CS162 © UCB Fall 2020

Simple B&B: User Code Running

OS

Proc

1

Proc

2

Proc

n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100…Bound

xxxx…uPC

regs

sysmode

…

0

PC

0000…

FFFF…

00FF…

� How does kernel
switch between
processes?

� First question: How to
return to system?

0001…

Lec 2.448/31/20 Kubiatowicz CS162 © UCB Fall 2020

3 types of User  Kernel Mode Transfer

� Syscall

– Process requests a system service, e.g., exit

– Like a function call, but “outside” the process

– Does not have the address of the system function to call

– Like a Remote Procedure Call (RPC) – for later

– Marshall the syscall id and args in registers and exec syscall

� Interrupt

– External asynchronous event triggers context switch

– e. g., Timer, I/O device

– Independent of user process

� Trap or Exception

– Internal synchronous event in process triggers context switch

– e.g., Protection violation (segmentation fault), Divide by zero, …

� All 3 are an UNPROGRAMMED CONTROL TRANSFER

– Where does it go?

Lec 2.458/31/20 Kubiatowicz CS162 © UCB Fall 2020

How do we get the system target address of
the “unprogrammed control transfer?”

Lec 2.468/31/20 Kubiatowicz CS162 © UCB Fall 2020

Interrupt Vector

� Where else do you see this dispatch pattern?

interrupt number (i)

intrpHandler_i () {

….

}

Address and properties

of each interrupt handler

Lec 2.478/31/20 Kubiatowicz CS162 © UCB Fall 2020

Simple B&B: User => Kernel

OS

Proc

1

Proc

2

Proc

n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100…Bound

xxxx…uPC

regs

sysmode

…

0

PC

0000…

FFFF…

00FF…
� So: How to return to

system?
– Timer Interrupt

– I/O requests

– Other things

0000 1234

Lec 2.488/31/20 Kubiatowicz CS162 © UCB Fall 2020

Simple B&B: Interrupt

OS

Proc

1

Proc

2

Proc

n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100 …Bound

0000 1234uPC

regs

sysmode

…

1

PC

0000…

FFFF…

00FF…

IntrpVector[i]

� How to save registers
and set up system
stack?

Lec 2.498/31/20 Kubiatowicz CS162 © UCB Fall 2020

Simple B&B: Switch User Process

OS

Proc

1

Proc

2

Proc

n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 3000 …

0080 …Bound

0000 0248uPC

regs

sysmode

…

1

PC

0000…

FFFF…

00D0…

0001 0124

1000 …

1100 …

0000 1234

regs

00FF…

RTU

� How to save registers
and set up system
stack?

Lec 2.508/31/20 Kubiatowicz CS162 © UCB Fall 2020

Simple B&B: “resume”

OS

Proc

1

Proc

2

Proc

n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 3000 …

0080 …Bound

xxxx xxxxuPC

regs

sysmode

…

0

PC

0000…

FFFF…

00D0…

000 0248

1000 …

1100 …

0000 1234

regs

00FF…

RTU

� How to save registers
and set up system
stack?

Lec 2.518/31/20 Kubiatowicz CS162 © UCB Fall 2020

Running Many Programs ???

� We have the basic mechanism to

– switch between user processes and the kernel,

– the kernel can switch among user processes,

– Protect OS from user processes and processes from
each other

� Questions ???

� How do we decide which user process to run?

� How do we represent user processes in the OS?

� How do we pack up the process and set it aside?

� How do we get a stack and heap for the kernel?

� Aren’t we wasting are lot of memory?

� …

Lec 2.528/31/20 Kubiatowicz CS162 © UCB Fall 2020

Process Control Block

� Kernel represents each process as a process control block (PCB)

– Status (running, ready, blocked, …)

– Register state (when not ready)

– Process ID (PID), User, Executable, Priority, …

– Execution time, …

– Memory space, translation, …

� Kernel Scheduler maintains a data structure containing the PCBs

� Scheduling algorithm selects the next one to run

Lec 2.538/31/20 Kubiatowicz CS162 © UCB Fall 2020

Scheduler

if (readyProcesses(PCBs)) {

nextPCB = selectProcess(PCBs);

run(nextPCB);

} else {

run_idle_process();

}

Lec 2.548/31/20 Kubiatowicz CS162 © UCB Fall 2020

Conclusion: Four Fundamental OS Concepts

� Thread: Execution Context

– Fully describes program state

– Program Counter, Registers, Execution Flags, Stack

� Address space (with or w/o translation)

– Set of memory addresses accessible to program (for read or write)

– May be distinct from memory space of the physical machine
(in which case programs operate in a virtual address space)

� Process: an instance of a running program

– Protected Address Space + One or more Threads

� Dual mode operation / Protection

– Only the “system” has the ability to access certain resources

– Combined with translation, isolates programs from each other and the
OS from programs

