CS162
Operating Systems and
Systems Programming

Lecture 19

File Systems

Professor Natacha Crooks & Matei Zaharia
https://cs162.org/

Slides based on prior slide decks from David Culler, lon Stoica, John Kubiatowicz, Alison Norman and Lorenzo Alvisi

Files & Directories

o0 9 website
< £ ERDCEEE o8- Q Searc
PR | Mame ~ Date Modified Size | Kind
£3 Dropbox ¥ I static ~Feb 10, 2015, 12:45 PM = Folder i
» B css Jan 14, 2016, 11:51 AM - Folder
¢ iCloud Drive » 19 exams Mar 10, 2016, 9:03 PM - Folder
@ AirDrop » [fonts Jan 14, 2016, 11:51 AM -~ Folder
= v I hw Mar 1, 2016, 7:28 PM - Foldor
D Desktop 4 hwo.paf Jan 20, 2016, 3:18 PM 175KB PDF Document
N adj = hwi.pdf Feb 11, 2016, 8:42 AM 128 KB PDF Document
¢ Applications la hw2.pdf Feb 16, 2016, 8:00 PM 180KB PDF Document
‘= hw3.pdf Mar 1, 2016, 7:29 P 200KB PDF Document
™ Documents » s Jan 14, 2016, 11:51 AM - Folder
o Downloads » [lectures Apr 1, 2016, 5:41 PM -~ Folder
E Kovies » B pics Jan 18, 2016, 6:13 PM -~ Folder
» [profiles Jan 25, 2016, 3:32 PM - Foider
¥ Box Sync » I projects Mar 26, 2016, 10:07 AM - Folder
B Google Drive v [readings Jdn 14, 2016, 11:51 AM - Folder
‘4 endtoend.pdt Jan 14, 2016, 11:51 AM 38KB PDF Document
Devices = FFS84.pdf Jan 14, 2016, 11:51 AM 13MB PDF Document
(@) Remote Disc . garman_bug_81.pdf Jan 14, 2016, 11:51 AM 810KB PDF Document
‘= |acobson-congestion.paf Jan 14, 2016, 11:51 AM 1.2MB POF Document
i \» Orginal_Byzantine.pdf Jan 14, 2016, 11:51 AM 1.2MB PDF Documant
L1 adj-MBP ln patterson_queue.pd! Jan 14, 2016, 11:51 AM 1AMB PDF Document
& adj-mini ‘= TheracNew.pdf Jan 14, 20186, 11:51 AM 299KB PDF Document
v [sections Mar 17, 2016, 10:03 AM —~ Folder
68 fido i sectioni.pdf Jan 18, 20186, 6:13 PM 130 KB PDF Document
@ AL.. la section2.pdf Jan 26, 2016, 7:13 PM 108KB PDF Document
la saction2sol.pdf Jan 28, 2016, 10:10 AM 127KB PDF Document
Tags & sectiond.pdf Feb 5, 2016, 10:15 AM 115KB PDF Document
la section3sol.pdf Feb 5, 2016, 10:15 AM 134 KB PDF Document
'm sectiond.pdf Feb 10, 2016, 12:45 PM 114 KB POF Document
la sectiondsol.pdf Feb 11, 2016, 8:42 AM 134KB PDF Document
is i 5 it Eah 16 2016 155 DAA 100 KR BOE Dacumant
& Macintoeh HD » s Users » 4 adj » iy Documents » [y GitHub » [y website

51 items, 39.01 GB available

Crooks & Zaharia CS162 © UCB Spring 2025

19.2

Recall: HDDs and SSDs

Usually 10 000 or 15 000 rpm SAS drives

0.1 ms Accuss times 5.5 e 8.0 ms

SS0s exhive wrivally no access tme

5505 dediver at lnast n.n“m w ’aﬂomam MDD resch up o

Ennn |ojs SS0u e #l sl 15 biress fusien S HDOs 400 in/s

SSOw huve o fuiure . p ege HEO s fulure rute
rale of 1ass than Reliahility

Nuchsatas bedwnan

This mukes SS0s 4 - 10 lmes more reduble 2 p— 5
0.5% %

$SDz conmume betwean Enerﬂ' mngs

spproimately 100 walls sre ssved

S505 nave an average HODDE Ayvarags WO vwat
1D it o CPU Power about
You wil have an extra 6%
1) of C# power for other operations 1 0%
the arverage service tme foo e L0 ¢ » &
c wquesl lime with
20 10 raquast whila nunning |llplll/0lllpllt

a backup remains below

request times

o
zn S50z alow for much 4nn~snu
ms fasier data access ms

SS0 backups @ aboul B.ckw nat.s HDO nackups taka up 1o

6 hours SS0s akrws for 3 - 5 limes lasee 2“ —~— 24 hours

backups for your dals

Both work better with larger reads & writes

HDO= consume betwean

This moors that on rge server ke ours 5 1 5
2 8 O watts " "0 & watts

HDOs during Dackup rses up

HDD
Require seek +
rotation

Not parallel (one
head)

Brittle (moving parts)

Random reads take
10s milliseconds

Slow (Mechanical)

Cheap/large storage

Crooks & Zaharia CS162 © UCB Spring 2025

SDD

No seeks
Parallel

No moving parts

Random reads take
10s microseconds

Wears out

Expensive/smaller
storage

19.3

Recall: 1/0 and Storage Layers

High Level I/O Streams
Low Level I/0 File Descriptors
Syscall open(), read(), write(), close(), ...

= e

Disks, Flash, Controllers, DMA

Open File Descriptions
File System
Files/Directories/Indexes
- <
|/O Driver Commands and Data Transfers

Crooks & Zaharia CS162 © UCB Spring 2025

19.4

Recall: FD & File Descriptors

O: STDIN

1: STDOUT

2: STDERR

Per-Process File
Descriptor Table

Global Open File
Description Table

Crooks & Zaharia CS162 © UCB Spring 2025

19.5

From Storage to File Systems

I/O APl and
syscalls Variable-Size Buffer Memory Address

Logical Index,

Flash Trans. Layer

Hardware Devices

Phys Index., 4KB

Physical Index,
512B or 4KB Erasure Block

HDD SSD

Crooks & Zaharia CS162 © UCB Spring 2025

19.6

Building a File System

Layer of OS that transforms block interface of disks (or other block devices) into
Files, Directories, etc.

Crooks & Zaharia CS162 © UCB Spring 2025 19.7

Purpose of a File System

Take limited hardware interface (array of blocks) and provide a more
convenient/useful interface with:

. Find file by name, not block numbers

Organize file names within directories

: Map files to blocks

: Enforce access restrictions

: Keep files intact despite crashes, failures, etc.

Crooks & Zaharia CS162 © UCB Spring 2025 19.8

User vs. System View of a File

Durable data structures

(system call interface):
Collection of bytes (UNIX)

Doesn’t matter to system what kind of data structures you want to store on disk!

(inside OS):
Collection of blocks (a block is a logical transfer unit, while a sector is a physical one)
Block size > sector size; in UNIX, block size is 4KB

Crooks & Zaharia CS162 © UCB Spring 2025 19.9

Translation from User to System View

2~B-0-=

What happens if user says: “give me bytes 2 —127?”

— Fetch block corresponding to those bytes
— Return just the correct portion of the block

What about writing bytes 2 — 127

— Fetch block, modify relevant portion, write out block

Everything inside file system is in terms of whole-size blocks

Crooks & Zaharia CS162 © UCB Spring 2025 19.10

What Does the File System Need to Do?

Track free disk blocks
Need to know where to put newly written data

Track which blocks contain data for which files
Need to know where to read a file from

Track files in a directory
Find list of file's blocks given its name

Where do we maintain all of this?
Somewhere on disk

Crooks & Zaharia CS162 © UCB Spring 2025

19.12

Critical Factors in File System Design

(Hard) Disk Performance !!!

Open before read/write

Size is determined as files are used !!!

Organized into directories

Need to carefully allocate / free blocks

Crooks & Zaharia CS162 © UCB Spring 2025

19.13

Files & Directories

foo bar

bar.txt bar foo

bar.ixt

Crooks & Zaharia CS162 © UCB Spring 2025 19.14

Manipulating Directories

System calls to access directories
- open / creat / readdir traverse the structure /
- mkdir / rmdir add/remove entries

- 1link /unlink (rm) Jusr
jetc

libc support
- DIR * opendir (const char *dirname)
- struct dirent * readdir (DIR *dirstream)

- int readdir_r (DIR *dirstream, struct dirent *entry,
struct dirent **result)

/etc/passwd

Crooks & Zaharia CS162 © UCB Spring 2025 19.15

Example: Early Unix File System

Superblock object: information about file system

Free bitmaps: what is allocated/not allocated

Inode object: represents a specific file

Dentry object: directory entry, single component of a path

Blocks: How files are stored on disk

File object: open file associated with a process

Crooks & Zaharia CS162 © UCB Spring 2025

19.16

Components of Unix File System

open ("/home/matei/csl62/foo.txt")
File path

Directory

Structure
File
Header
Structure One Block = potentially multiple sectors
E.g.: 512B sector, 4KB block

File number

“inumber”

- - Data blocks

~>

Inode
(“index node”)

Crooks & Zaharia CS162 © UCB Spring 2025

19.17

The (In)famous Inode

Mode | Flags Offset h
Inode Number
Inode Number

O: STDIN

c
=

1: STDOUT 200
00

C
)

2: STDERR W2

Per-Process File
Descriptor Table

Global Open File
Description Table

Crooks & Zaharia CS162 © UCB Spring 2025 19.18

How to Find a File’s Inode Number?

Look up through directory structure

A directory is a specialized file containing
<file_name : inode number> mappings

Each <file_name : inode> mapping is called a directory entry

Crooks & Zaharia CS162 © UCB Spring 2025

19.19

How to Read a File from Disk

Let’s read file /foo/bar.txt (time goes downwards)

data inode
bitmap bitmap

root

foo

bar

inode inode inode

root

foo

bar

bar

bar

data data data data data

0]

[1]

2]

read
read
open(bar) read
read

read
read

read() read
write
read

read() read
write
read

read() read
write

Crooks & Zaharia CS162 © UCB Spring 2025

19.20

File System Workload Characteristics

A Five-Year Study of File-System Metadata
NITIN AGRAWAL Published in FAST 2007

University of Wisconsin, Madison
and

WILLIAM J. BOLOSKY, JOHN R. DOUCEUR, and JACOB R. LORCH
Microsoft Research

Crooks & Zaharia CS162 © UCB Spring 2025 19.21

Observation #1: Most Files Are Small

12000

10000 |-

4000 -

Files per file system

2000

8000

6000 |-

i 2001 -------
... ,-:'\\ 2002 iy e
/ ? 2003
,‘, N, 2004
""" g3t ¢ EAkh A

128 2K 32K 512K
File size (bytes, log scale, power-of-2 bins)

Fig. 2. Histograms of files by size.

Crooks & Zaharia CS162 © UCB Spring 2025

8M

128M

19.22

Observation #2: Most Bytes are in Large Files

ph | |) |] | ! ' '

Y] a— | S TR .. W, S 2001 .
PP N A W S AT S T - 2008 s
oo RO (R WO, SN, . G0 SUURN SHODS. WA . e
1000 b A N L L L L

Used space per file system (MB)

512 4K 32K 256K 2M 16M 128M 1G 8G 64G
Containing file size (bytes, log scale, power-of-2 bins)

Fig. 4. Histograms of bytes by containing file size.

Crooks & Zaharia CS162 © UCB Spring 2025

19.23

Unix Inode Structure

File Number is index into an array of inode structures
Each inode corresponds to a file and contains its metadata
Inode maintains a multi-level tree to find storage blocks for files

Original inode format appeared in BSD 4.1
Berkeley Standard Distribution Unix!

Crooks & Zaharia CS162 © UCB Spring 2025

19.24

Unix Inode Structure

Inode Array Triple Double
Indirect Indirect Indirect Data
Inode Blocks Blocks Blocks Blocks
Fil,e/

Metadata /j

Direct \
Pointers D
(12x) ‘D ‘D
Indirec’g i’ointer I:l
Dbl. Indirect Ptr. N . ‘D
Tripl. Indrect Ptr: \—'\%\D

Crooks & Zaharia CS162 © UCB Spring 2025 19.25

File Attributes

Inode Array Triple Double
Indirect Indirect Indirect Data
—lnodae— Blocks Blocks Blocks Blocks

File”
Metadat3 /D
Z
User T
Group —
9 basic access control bits []

- UGO x RWX .

SetUID bit a
- execute at owner permissions /D\D_
rather than user L] > S
SetGID bit —D\;:%\D
- execute at group’s permissions

Crooks & Zaharia CS162 © UCB Spring 2025 19.26

Direct Pointers

Triple Double
Indirect Indirect Indirect Data
/ Inode Blocks Blocks Blocks Blocks

12 Direct pointers

4kB blocks = sufficient for

files up to 48KB File
etadata //D
, 12000 - - ; ; - . : -
Direct _ %ﬁ N
Pointers s0000 b o iy s DO weoneee]
_ i) 004
§ BOOD [t S
. 2 gooo |f i
Indirect Pointe g 000 Vi ‘
Dbl. Indirect Ptr. JUL | T A '
Tripl. Indrect Ptr: L M A N
2000 - - , ,.-:_':.-."'{ ._."-
o i i | .I._.____;.;:__;..._;___‘_
0 B 128 2K 32K 512K &M 128M

File siza (bytes, log scals, powar-al-2 bing)

Fig. 2. Histograms of files by size.

Crooks & Zaharia CS162 © UCB Spring 2025 19.27

Indirect Pointers

Inode Array

Triple Double
Indirect Indirect Indirect Data
/ Inode Blocks Blocks Blocks Blocks

Indirect pointers point to
a disk block containing
only pointers

File”
Metadata /D

Direct

Crooks & Zaharia CS162 © UCB Spring 2025

19.28

Indirect Pointers

Assume 4KB blocks

What is the maximum size of a file with only direct pointers?
12 * 4 KB=48 KB

What is the maximum size of a file with one indirect pointer?
12 * 4 KB+ 1024 * 4KB =4.1MB

What is the maximum size of a file with double indirect pointers?
12 * 4KB + 1024 * 4KB + 1024 * 1024 * 4KB=4.6 GB

Crooks & Zaharia CS162 © UCB Spring 2025

19.29

Inodes form an on-disk index

Sample file in multilevel
indexed format:

— 12 direct ptrs, 4K blocks

— How many accesses for
block #23? (assume file
header accessed on open)?

» Two: One for indirect block,
one for data

— How about block #57

» One: One for data

— Block #11007?

» Three: double indirect block,
indirect block, and data

Inode Array

File”
Metadata

Direct
Pointers

Indirect Pointer
Dbl. Indirect Ptr.

Crooks & Zaharia CS162 © UCB Spring 2025

Triple Double
Indirect Indirect Indirect Data
Blocks Blocks Blocks Blocks

Inode

Tripl. Indrect Ptr:

19.30

Creating new files

Inodes are (logically) stored in an inode table
File system stores a bitmap of free inodes and free blocks
On creating a new file,

1) Check which inode is free/where that inode is stored
2) Check which data blocks are free

Crooks & Zaharia CS162 © UCB Spring 2025 19.31

Putting it together

/cs162/matei.txt (60KB)

Each block is 4KB
Inode is 256 Bytes

Crooks & Zaharia CS162 © UCB Spring 2025

19.32

Putting it together

/cs162/matei.txt (60KB)

Sblock

Crooks & Zaharia CS162 © UCB Spring 2025 19.33

Putting it together

/cs162/matei.txt (60KB)

Sblock | Inode Block
bitmap bitmap

Crooks & Zaharia CS162 © UCB Spring 2025 19.34

Putting it together

/cs162/matei.txt (60KB)

Inodes Inodes Inodes Inodes
16 to 31 32to 47 48 to 63 64 to 79

Inode Block Inodes 0
bitmap bitmap to 15

Crooks & Zaharia CS162 © UCB Spring 2025 19.35

Putting it together

/cs162/matei.txt (60KB)

Inodes Inodes Inodes
32to 47 48 to 63 64 to 79

‘. v

Crooks & Zaharia CS162 © UCB Spring 2025 19.36

Putting it together

Allocate inode O
Create data block

Inodes Inodes Inodes
32to 47 48 to 63 64 to 79

‘. v

Crooks & Zaharia CS162 © UCB Spring 2025 19.37

Putting it together

Allocate inode O
Create data block

Sblock 1000 1000 Inodes O Inodes Inodes Inodes Inodes
o 0000 to 15 16to31 [32to47 j 48to63 || 64t079

Y Y ¢ v 4 9,

Crooks & Zaharia CS162 © UCB Spring 2025 19.38

Putting it together

/cs162

Allocate inode 1
Update direntry for /
Create data block

Sblock 1000 1000 Inodes O Inodes Inodes Inodes Inodes
o 0000 to 15 16to31 [32to47 j 48to63 || 64t079

Y Y ¢ v 4 9,

Crooks & Zaharia CS162 © UCB Spring 2025 19.39

Putting it together

/cs162

Allocate inode 1
Update direntry for /
Create data block

Sblock

<csl162,1>

Crooks & Zaharia CS162 © UCB Spring 2025 19.40

Putting it together

/cs162/matei.txt (60KB)
Allocate inode 3
Update dentry
Create indirect block
Create data blocks

Sblock 1111 Inodes 0 Inodes Inodes
'} 16 to 31 32 to 47 48 to 63 64 to 79
= A " A & "
<cs162,1> <matei.txt.,3> § block block block block block block
N

Crooks & Zaharia CS162 © UCB Spring 2025 19.41

Unix File System Improved (Berkeley Fast File System)

A Fast File System for UNIX*

Marshall Kirk McKusick, William N. Joyf,
Samuel J. Lefflerz, Robert S. Fabry

Computer Systems Research Group
Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, CA 94720

ABSTRACT

A reimplementation of the UNIX file system is described. The reimplementation
provides substantially higher throughput rates by using more flexible allocation policies
that allow better locality of reference and can be adapted to a wide range of peripheral
and processor characteristics. The new file system clusters data that is sequentially
accessed and provides two block sizes to allow fast access to large files while not wasting
large amounts of space for small files. File access rates of up to ten times faster than the
traditional UNIX file system are experienced. Long needed enhancements to the pro-

Introducing Disk Awareness

Crooks & Zaharia CS162 © UCB Spring 2025 19.42

Recall: Critical Factors in File System Design

(Hard) Disk Performance !!!
Maximize sequential access, minimize seeks

Open before Read/Write
— Can perform protection checks and look up where data is in advance

Size is determined as files are used !!!
— Can write (or read zeros) to expand the file

— Start small and grow, need to make room

Organized into directories
— What data structure (on disk) for that?

Need to carefully allocate / free blocks
— Such that access remains efficient

Crooks & Zaharia CS162 © UCB Spring 2025

19.43

Recall: Magnetic Disks

Track
Sector
Cylinders: all the tracks under the
head at a given point on all surfaces o |
— - Cylinder
Read/write data is a three-stage process: Platter

— Seek time: position the head/arm over the proper track
— Rotational latency: wait for desired sector to rotate under r/w head

— Transfer time: transfer a block of bits (sector) under r/w head

Crooks & Zaharia CS162 © UCB Spring 2025 19.44

Fast File System (BSD 4.2, 1984)

Same inode structure as in BSD 4.1
— Same file header and triply indirect blocks like we just studied

— Some changes to block sizes from 1024=>4096 bytes for performance

Optimization for Performance and Reliability:
— Distribute inodes among different tracks to be closer to data
— Uses bitmap allocation in place of freelist
— Attempt to allocate files contiguously
— 10% reserved disk space
— Skip-sector positioning (mentioned later)

Crooks & Zaharia CS162 © UCB Spring 2025 19.45

FFS Locality: Block Groups

Distribute header information (inodes) closer to o
the data blocks, in same “cylinder group” o~ PBlodGowo
e Block Group 1 “\\\
. . . . W / / T [T \\\
File system volume divided into set of “block / __/ ™ Gmuﬁ;a% N\
groups” [/ S e\ |\
A4 N2 L
|' L o |2 .% | ¢ ‘l
Data blocks, metadata, and free space CoRlz /..f s]
interleaved within block group RN SEG)
\ ﬁ,.:\ 'ﬁ-;% \ e 0 S / é? af
\\"_ K\ mﬁg\\“‘ %3 Blocis for ™ / ;fjf--tg I,‘?g
. . . . \‘x\ (\\“jﬁqﬂ‘t’e e— g //E.;;‘?b/ frf
Put a directory and its files in same block group \ S Bt 1z P
\H. &2%5:_'_'_'_'_‘: 5 ____f-;; ';iaﬁcf?ﬁ‘,\»/
“‘ e >

Crooks & Zaharia CS162 © UCB Spring 2025 19.46

FFS Locality: Block Groups

First-Free allocation of new file blocks

— To expand file, first try successive blocks in
bitmap, then choose a new range of blocks

T T

— Few little holes at start, big sequential runs at " BlockGroup0
end of group /,, T T
. .) e Block Group 1 '“\\\
— Avoids fragmentation /S P .
. . . F_ff / e Block GI’GUF‘:-EH‘“\ N \
— Sequential layout for big files A r?'?\ \
."ll x //’f ‘\\\ ?'.,f:, x\\- \‘\. 'I.II
II [o I.' I,." '-.II t‘; Ill% II E [
| L‘I § | | 3 Ilg | £ ‘
I B2 | \ o4 [=]
o) "'. ,@ 2 / & !5} [g/
Important: keep 10% or more free! S NN S EE @/
N NS — ¢/ ¢ g
H ! @ G N & g5 / é:' / g
— Reserve space in the Block Group R By, N ABlocksfor® /&N
\ \\ fﬁqor- T— S X ,ff
\. \“H:& s g 12 /@@? /!
\ QQ&EE T - ;\G&? S
)) 0 al
T ey
T 19.47

Crooks & Zaharia CS162 © UCB Spring 2025

Attack of the Rotational Delay

Missing blocks due to rotational delay

Issue: Read one block, do processing, and read next block. In meantime, disk has
continued turning: missed next block! Need 1 revolution/block!

Crooks & Zaharia CS162 © UCB Spring 2025 19.48

Attack of the Rotational Delay

Solution 1: Skip sector positioning (“interleaving”)

» Place the blocks from one file on every other block of a track: give time for
processing to overlap rotation

» Can be done by OS or in modern drives by the disk controller

Solution 2: Read-ahead: read next block right after first, even if application
hasn’t asked for it yet

» This can be done by the OS

» Or by the disk (“track buffers”): many modern disk controllers have internal
RAM that allows them to read a complete track

Crooks & Zaharia CS162 © UCB Spring 2025 19.49

UNIX 4.2 BSD FFS

Pros
— Efficient storage for both small and large files
— Locality for both small and large files
— Locality for metadata and data
— No defragmentation necessary!

Cons
— Inefficient for tiny files (a 1 byte file requires both an inode and a data block)
— Inefficient encoding when file is mostly contiguous on disk
— Need to reserve 10-20% of free space to prevent fragmentation

Crooks & Zaharia CS162 © UCB Spring 2025 19.50

What about other file systems?

4 FAT:)
File Allocation Table
_ (MS-DOS,1977))
4)

Windows NTFS

Crooks & Zaharia CS162 © UCB Spring 2025 19.51

FAT (File Allocation Table)

Assume (for now) we have a
way to translate a path to
a “file number”

— i.e., adirectory structure

Disk Storage is a collection of Blocks

— Just hold file data
(offset o =< B, x >)

Example: file_read 31, <2, x>

— Index into FAT with file number

— Follow linked list to block

— Read the block from disk
into memory

memory

Crooks & Zaharia CS162 © UCB Spring 2025

O:

File number \
37:

N-1:

FAT

N-1:

Disk Blocks

File 31, Block O

File 31, Block 1

File 31, Block 2

19.52

FAT (File Allocation Table)

File is a collection of disk blocks FAT Disk Blocks
0: 0:

FAT is linked list 1-1 with blocks e number \ i
31

":I File 31, Block 0

File number is index of root of block list for /L = File 31, Block |

the file

File offset: block number and offset within

block

free
Follow list to get block number - Fle 31, Block 2
Unused blocks marked free N N

— Could require scan to find

— Or, could use a free list memory

Crooks & Zaharia CS162 © UCB Spring 2025 19.53

FAT (File Allocation Table)

file_write(31,<3,y>)
— Grab free block
— Linking them into file

O:

File number \
37

free

memory

Crooks & Zaharia CS162 © UCB Spring 2025

N-1:

Disk Blocks

File 31, Block O

File 31, Block 1

File 31, Block 3

File 31, Block 2

N-1:

19.54

FAT (File Allocation Table)

Where is FAT stored?

O:

File #1
— On disk
\‘ 3

How to format a disk?

— Zero the blocks, mark FAT entries “free”

How to quick format a disk?
— Mark FAT entries “free” free

File #2

Simple: can implement in device firmware

memory

Crooks & Zaharia CS162 © UCB Spring 2025

/

N-1:

Disk Blocks

File 31, Block O

File 31, Block 1

File 31, Block 3

File 31, Block 2

N-1:

19.55

FAT: Directories

file 5268830 end
Free foo.txt

“/home/tom” file
F
Space |66212871 e

Name | - Music Work . . ,
File Number | 5268830 88026158 35002320 85200219 |
Next | ' /J \\

— _P'f'l

Space

A directory is a file containing <file_name: file_number> mappings

In FAT: file attributes are kept in directory (!!!)
— Not directly associated with the file itself

Each directory a linked list of entries
— Requires linear search of directory to find particular entry

Where do you find root directory (“/”)?
— At well-defined place on disk
— For FAT, this is at block 2 (there are no blocks 0 or 1)

Crooks & Zaharia CS162 © UCB Spring 2025 19.56

FAT Discussion

FAT Disk Blocks
Suppose you start with the file number: 0 0
File #1 \
e Time to find first block? 31 —=:| LTl oo
_ - File 31, Block 1
e Block layout for file?
e Sequential access?
e Random access? 3 Bk 3
<= e , blOC
e Fragmentation? free
e Small files? Fle #) / N
L e File 31, Block 2
e Big files?
N-1: N-1:
memory

Crooks & Zaharia CS162 © UCB Spring 2025 19.57

Windows NTFS

Crooks & Zaharia CS162 © UCB Spring 2025 19.58

New Technology File System (NTFS)

Default on modern Windows systems

Variable length extents

Master File Table
— Everything (almost) is a sequence of <attribute:value>

Each entry in MFT contains metadata and:
— File’s data directly (for small files)
— A list of extents (start block, size) for file’s data
— For big files: pointers to other MFT entries with more extent lists

Crooks & Zaharia CS162 © UCB Spring 2025

19.59

NTFS

Extent
Maszter File Takle {_Extent
ME'T
Log file record
Extsent
Extent 1
Small file record]
Extent 2
Large file record
Small directory record Extent 32

http://ntfs.com/ntfs-mft.htm

Crooks & Zaharia CS162 © UCB Spring 2025 19.60

NTFS Small File: Data stored with Metadata

Master File Table

Create time, modify time, access time,
Owner id, security specifier, flags (RO, hidden, sys)

MFT Record (small file)

data attribute

Std. Info. File Name

Data (resident)

(free)

Crooks & Zaharia CS162 © UCB Spring 2025

Attribute list

19.61

NTFS Medium File: Extents for File Data

Master File Table

Start .
Length
,__ %
=
(g0}
S
a
MFT Record Start + Length_,|
Std. Info. | File Name Data (nonresident) (free)
Start N
|
Length L
'\ -
Q
5
(g0}
S
a)
Start + Length

Crooks & Zaharia CS162 © UCB Spring 2025

Y

19.62

NTFS Large File: Pointers to Other MFT

-
-
......

]

.......

......

......

........

MFT Record
(big/fragmented file)
Std. Info. | Aurlist 1 Dawa (nonresident)
i] e
Data (nonresident) \
]] B
; Data (nonresident)
 — —
Data (nonresident)
]]]

Crooks & Zaharia CS162 © UCB Spring 2025

19.63

NTFS Directories

Directories implemented as B-Trees

File's number identifies its entry in MFT

MFT entry always has a file name attribute

— Human readable name, file number of parent dir

Hard link? Multiple file name attributes in MFT entry

Crooks & Zaharia CS162 © UCB Spring 2025

19.64

	Default Section
	Slide 1: CS162 Operating Systems and Systems Programming Lecture 19 File Systems
	Slide 2: Files & Directories
	Slide 3: Recall: HDDs and SSDs
	Slide 4: Recall: I/O and Storage Layers
	Slide 5: Recall: FD & File Descriptors
	Slide 6: From Storage to File Systems
	Slide 7: Building a File System
	Slide 8: Purpose of a File System
	Slide 9: User vs. System View of a File
	Slide 10: Translation from User to System View
	Slide 12: What Does the File System Need to Do?
	Slide 13: Critical Factors in File System Design
	Slide 14: Files & Directories
	Slide 15: Manipulating Directories
	Slide 16: Example: Early Unix File System
	Slide 17: Components of Unix File System
	Slide 18: The (In)famous Inode
	Slide 19: How to Find a File’s Inode Number?
	Slide 20: How to Read a File from Disk
	Slide 21: File System Workload Characteristics
	Slide 22: Observation #1: Most Files Are Small
	Slide 23: Observation #2: Most Bytes are in Large Files
	Slide 24: Unix Inode Structure
	Slide 25: Unix Inode Structure
	Slide 26: File Attributes
	Slide 27: Direct Pointers
	Slide 28: Indirect Pointers
	Slide 29: Indirect Pointers
	Slide 30: Inodes form an on-disk index
	Slide 31: Creating new files
	Slide 32: Putting it together
	Slide 33: Putting it together
	Slide 34: Putting it together
	Slide 35: Putting it together
	Slide 36: Putting it together
	Slide 37: Putting it together
	Slide 38: Putting it together
	Slide 39: Putting it together
	Slide 40: Putting it together
	Slide 41: Putting it together
	Slide 42: Unix File System Improved (Berkeley Fast File System)
	Slide 43: Recall: Critical Factors in File System Design
	Slide 44: Recall: Magnetic Disks
	Slide 45: Fast File System (BSD 4.2, 1984)
	Slide 46: FFS Locality: Block Groups
	Slide 47: FFS Locality: Block Groups
	Slide 48: Attack of the Rotational Delay
	Slide 49: Attack of the Rotational Delay
	Slide 50: UNIX 4.2 BSD FFS
	Slide 51: What about other file systems?
	Slide 52: FAT (File Allocation Table)
	Slide 53: FAT (File Allocation Table)
	Slide 54: FAT (File Allocation Table)
	Slide 55: FAT (File Allocation Table)
	Slide 56: FAT: Directories
	Slide 57: FAT Discussion
	Slide 58: Windows NTFS
	Slide 59: New Technology File System (NTFS)
	Slide 60: NTFS
	Slide 61: NTFS Small File: Data stored with Metadata
	Slide 62: NTFS Medium File: Extents for File Data
	Slide 63: NTFS Large File: Pointers to Other MFT
	Slide 64: NTFS Directories

