
CS162
Operating Systems and
Systems Programming

Lecture 18

Storage Devices & File Systems

Professor Natacha Crooks & Matei Zaharia

https://cs162.org/

Slides based on prior slide decks from David Culler, Ion Stoica, John Kubiatowicz, Alison Norman and Lorenzo Alvisi

18.2Crooks & Zaharia CS162 © UCB Spring 2025

Recall : Simplified IO architecture

Follows a hierarchical structure
because of cost:

the faster the bus, the more
expensive

18.3Crooks & Zaharia CS162 © UCB Spring 2025

Recall: How Does Processor Talk to Devices?

• CPU interacts with a Device Controller
– Contains a set of registers that can be read and written
– May contain memory for request queues, etc.

• Processor accesses registers in two ways:
– Port-Mapped I/O: in/out instructions

» Example in Intel assembly: out 0x21,AL
– Memory-mapped I/O: load/store instructions

» Registers/memory appear in physical address space

Device
Controller

read
write

control
status

Addressable
Memory
and/or
QueuesRegisters

(port 0x20)

Hardware
Controller

Memory Mapped
Region: 0x8f008020

Bus
Interface

Address +
Data

Interrupt Request

Processor Memory Bus

CPU

Regular
Memory

Interrupt
Controller

Bus
Adaptor

Bus
Adaptor

Other Devices
or Buses

18.4Crooks & Zaharia CS162 © UCB Spring 2025

Recall: Device Drivers

• Device Driver: Device-specific code in the kernel for each supported device
– Implements a standard, internal interface (e.g. block or character device)
– Device-specific configuration with the ioctl() system call

• Drivers typically have two pieces:
– Top half: accessed in call path from system calls

» implements a set of standard, cross-device calls like open(), close(),
read(), write(), ioctl(), strategy()

» Top half will start I/O to device, may put thread to sleep until finished
– Bottom half: run as interrupt routine

» Gets input or transfers next block of output
» May wake sleeping threads

• Your body is 90% water, your OS is 70% device drivers

18.5Crooks & Zaharia CS162 © UCB Spring 2025

Measuring Storage Device Performance

Latency - time to complete a task

Measured in units of time (s, ms, us, …, hours, years)

Throughput or Bandwidth – rate at which tasks are performed

Measured in units of things per unit time (ops/s, GFLOP/s)

Start up or Overhead – time to initiate an operation

Most I/O operations are roughly linear in b bytes

– Latency(b) = Overhead + b/TransferCapacity

18.6Crooks & Zaharia CS162 © UCB Spring 2025

Storage Devices

Magnetic disks (HDDs)

– Storage that rarely becomes corrupted

– Large capacity at low cost

– Block level random access (except for SMR – later!)

– Slow performance for random access

– Better performance for sequential access

Flash memory (SSDs)

– Storage that rarely becomes corrupted

– Capacity at intermediate cost (3-20x disk)

– Block level random access

– Good performance for reads; worse for random writes

– Wear patterns issue

18.7Crooks & Zaharia CS162 © UCB Spring 2025

Hard Disk Drives (HDDs)

Read/Write Head Side View

IBM Personal Computer 1986

30MB Hard Disk for 500 dollars

18.8Crooks & Zaharia CS162 © UCB Spring 2025

The Amazing Magnetic Disk

Store data magnetically on thin metallic
film bonded to rotating disk of glass,

ceramic, or aluminum

18.9Crooks & Zaharia CS162 © UCB Spring 2025

The Amazing Magnetic Disk

Track: concentric circle on surface

Sectors: slice of a track
Smallest addressable unit

Are units of transfers

Cylinder all the tracks under the head at a given point on

all surfaces

18.10Crooks & Zaharia CS162 © UCB Spring 2025

The Amazing Magnetic Disk

Sector

Track

Cylinder
Head

Platter

Track lengths vary across disk: outside tracks
have more sectors per track, higher
bandwidth

Disk is organized into regions of tracks with
the same number of sector/tracks

Usually, only outer half of radius is used

18.11Crooks & Zaharia CS162 © UCB Spring 2025

Reading/Writing Data

Seek time: position the head/arm over the

proper track

Rotational latency: wait for desired sector

to rotate under r/w head

Transfer time: transfer a block of bits

(sector) under r/w head

18.12Crooks & Zaharia CS162 © UCB Spring 2025

Reading/Writing Data

Software

Queue

(Device Driver)

H
ard

w
are

C
o
n
tro

ller

Media Time

(Seek+Rot+Xfer)

R
e
q
u
est

R
e
su

lt
Request Time =

Queueing Time + Controller Time + Seek + Rotational + Transfer

18.13Crooks & Zaharia CS162 © UCB Spring 2025

Typical Numbers for Magnetic Disk

Parameter Info/Range

Space/Density Space: 18TB (Seagate), 9 platters, in 3½ inch form factor!
Areal Density: ≥ 1 Terabit/square inch! (PMR, Helium, …)

Average Seek Time Typically 4-6 milliseconds

Average Rotational Latency Most laptop/desktop disks rotate at 3600-7200 RPM
(16-8 ms/rotation). Server disks up to 15,000 RPM.
Average latency is halfway around disk so 4-8 milliseconds

Controller Time Depends on controller hardware

Transfer Time Typically 50 to 250 MB/s. Depends on:
• Transfer size (usually a sector): 512B – 1KB per sector
• Rotation speed: 3600 RPM to 15000 RPM
• Recording density: bits per inch on a track
• Diameter: ranges from 1 in to 5.25 in

Cost Used to drop by a factor of two every 1.5 years (or faster), now slowing down

18.14Crooks & Zaharia CS162 © UCB Spring 2025

Disk Performance Example

Key to using disk effectively (especially for file systems) is to minimize seek and rotational delays

Do access patterns influence how fast can read/write to disk?

Avg seek time of 5ms,

7200RPM

Time for rotation: 60000 (ms/min)/7200(rev/min) ~= 8ms

Transfer rate of 50MByte/s, block size of 4Kbyte
4096 bytes/50×106 (bytes/s) = 81.92 × 10-6 sec

0.082 ms for 1 sector

18.15Crooks & Zaharia CS162 © UCB Spring 2025

Disk Performance Example

Read block from random place on disk (random reads):

– Seek (5ms) + Rot. Delay (4ms) + Transfer (0.082ms) = 9.082ms

– Approx 9ms to fetch/put data: 4096 bytes/9.082×10-3 s 451KB/s

Read block from random place in same cylinder:

– Rot. Delay (4ms) + Transfer (0.082ms) = 4.082ms

– Approx 4ms to fetch/put data: 4096 bytes/4.082×10-3 s 1.03MB/s

Read next block on same track (sequential reads):

– Transfer (0.082ms): 4096 bytes/0.082×10-3 s 50MB/sec

18.16Crooks & Zaharia CS162 © UCB Spring 2025

When is Disk Performance Highest?

When there are big sequential reads, or

When there is so much work to do that they can be piggy backed (reordering queues—one
moment)

OK to be inefficient when things are mostly idle

Bursts are both a threat and an opportunity

<your idea for optimization goes here>

Waste space for speed?

18.17Crooks & Zaharia CS162 © UCB Spring 2025

Disk Scheduling (1/3)

Disk can do only one request at a time; What order do you choose to
do queued requests?

2
,3

2
,1

3
,1

0
7

,2
5

,2
2

,2 HeadUser
Requests

1

4

2

D
isk H

e
ad

3

18.18Crooks & Zaharia CS162 © UCB Spring 2025

Disk Scheduling (1/3)

FIFO Order
Fair among requesters, but order of arrival may be to random spots

on the disk

SSTF: Shortest seek time first
Pick the request that’s closest on the disk

Con: SSTF good at reducing seeks, but
may lead to starvation

2
,3

2
,1

3
,1

0
7

,2
5

,2
2

,2 HeadUser
Requests

18.19Crooks & Zaharia CS162 © UCB Spring 2025

Disk Scheduling (2/3)

SCAN: Implements an Elevator Algorithm: take the closest request in
the direction of travel

– No starvation, but retains flavor of SSTF

2
,3

2
,1

3
,1

0
7

,2
5

,2
2

,2 HeadUser
Requests

18.20Crooks & Zaharia CS162 © UCB Spring 2025

Disk Scheduling (3/3)

C-SCAN: Circular-Scan: only goes in one direction
– Skips any requests on the way back

– Fairer than SCAN, not biased towards pages in middle

18.21Crooks & Zaharia CS162 © UCB Spring 2025

Lots of Intelligence in the Device Controller

Shingled Magnetic Recording (SMR): pack more data with error correcting codes

Disk write head has wider field than read head, so overlap tracks

Hide corruptions due to neighboring track writes (but must fix in background)

Sector sparing

Remap bad sectors transparently to spare sectors on the same surface

Slip sparing

Remap all sectors (when there is a bad sector) to preserve sequential behavior

Track skewing

Sector numbers offset from one track to the next, to allow for disk head
movement for sequential ops

18.22Crooks & Zaharia CS162 © UCB Spring 2025

Example of Current HDD
• Seagate Exos X24 (2023)

– 24 TB hard disk
» 10 platters, 20 heads
» 1.26 TB/in2

» Helium filled: reduce friction and power
– 4.16 ms average seek time
– 4096 byte physical sectors
– 7200 RPMs
– Dual 6 Gbps SATA /12Gbps SAS interface

» 285MB/s MAX transfer rate
» Cache size: 512MB

– Price: $ 479 (~ $0.02/GB)

• Original IBM Personal Computer/AT (1986)
– 30 MB hard disk
– 30-40 ms average seek time
– 0.7-1 MB/s (est.)
– Price: $500 ($17K/GB)

800k x

10 x
385 x

850k x

18.23Crooks & Zaharia CS162 © UCB Spring 2025

Solid State Drives (SSDs)

1995 – Replace rotating magnetic media with non-volatile
memory (battery backed DRAM)

2009 – Use flash memory

– Sector (4 KB page) addressable, but stores 4-64 “pages” per
memory block

– Trapped electrons distinguish between 1 and 0

No moving parts (no rotate/seek motors)

– Eliminates seek and rotational delay (0.1-0.2ms access
time)

– Very low power and lightweight

– Limited “write cycles”

18.24Crooks & Zaharia CS162 © UCB Spring 2025

The Flash Cell

Encode bit by trapping electrons into a cell

Single-level cell (SLC)

Single bit is stored within a transistor

Faster, more lasting (50k to 100k writes before wear out)

Multi-level cell (MLC)

Two/three bits are encoded into different levels of charge

Wear out much faster (1k to 10k writes)

18.25Crooks & Zaharia CS162 © UCB Spring 2025

Of Banks, Blocks, and Cells

Bank

Block Block

Page Page Page Page

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Flash chips organized in banks

– Banks can be accessed in
parallel

Blocks 128 KB/256KB

– (64 to 258 pages)

Pages Few KB

Cells 1 to 4 bits

Distinction between blocks and
pages important in operations!

Confusing: not
same as OS and

HDD “blocks”

18.26Crooks & Zaharia CS162 © UCB Spring 2025

Low-level Flash Operations

How do you read?

– Chip supports reading pages

– 10s of microseconds, independently of the previously read page

What about writing? More complicated!

– Must first erase the block

» Erase quite expensive (milliseconds)

– Once block has been erased, can then program a page

» Change 1s to 0s within a page.

» 100s of microseconds.

– Blocks can only be erased a limited number of times!

18.27Crooks & Zaharia CS162 © UCB Spring 2025

Low-level Flash Operations

INVALID ERASED VALID

18.28Crooks & Zaharia CS162 © UCB Spring 2025

Low-level Flash Operations

Assume block of 4 pages. All valid.

Want to write Page 0

Step 1: erase full block

Step 2: program page 0

18.29Crooks & Zaharia CS162 © UCB Spring 2025

SSD Architecture

Recall that SSDs uses low-level Flash operations to provide same interface as HDD

– read and write chunk (4KB) at a time

Reads are easy, but for writes, can only overwrite data one block (256KB) at a time!

Why not just erase and rewrite new version of entire 256KB block?

– Erasure is very slow (milliseconds)

– Each block has a finite lifetime, can only be erased and rewritten about 10K
times

– Heavily used blocks likely to wear out quickly

18.30Crooks & Zaharia CS162 © UCB Spring 2025

SSD Architecture (Simplified)

18.31Crooks & Zaharia CS162 © UCB Spring 2025

Flash Translation Layer (FTL)

Add a layer of indirection: the flash translation layer

Translates request for logical blocks (device interface) to low-level Flash blocks
and pages

Reduce write amplification

Ratio of the total write traffic in bytes issues by the flash chip by the FTL divided
by the total write traffic issued by the OS to the device

Avoid wear out

A single block should not be erased too often

18.32Crooks & Zaharia CS162 © UCB Spring 2025

FTL – Two Systems Principles

FTL uses indirection and copy-on-write

Maintains mapping tables in DRAM

– Map virtual block numbers (which OS uses) to physical page numbers (which
flash mem. controller uses)

– Can now freely relocate data w/o OS knowing

Copy on Write/ Log-structured FTL

– Don’t overwrite a page when OS updates its data

– Instead, write new version in a free page

– Update FTL mapping to point to new location

18.33Crooks & Zaharia CS162 © UCB Spring 2025

FTL Example

W
ri

te
(a

0)

Block 0 Block 1

Mapping Table
a0->0,0

a0

V E E E

Block 0 Block 1

Mapping Table:

E E E E

Initial

State

W
ri

te
(a

1
)

Block 0 Block 1

Mapping Table:
a0->0,0/a1->0,1

a0 a1

V V E E

W
ri

te
(a

1
)

Block 0 Block 1

Mapping Table:
a0->0,0/a1->1,0

a0 a1

V V

a1

V E

W
ri

te
(a

0
)

Block 0 Block 1

Mapping Table:
a0->1,1/a1->1,0

a0 a1

V V

a1 a0

V V

G
ar

b
ag

e
C

o
lle

ct Block 0 Block 1

Mapping Table:
a0->1,1/a1->1,0

E E

a1 a0

V V

18.34Crooks & Zaharia CS162 © UCB Spring 2025

Some Recent SSDs

• Silicon Power 4TB SATA Internal SSD (2023)

– Seq reads 540 MB/s

– Seq writes 500 MB/s

– Price (Amazon): $184 ($0.46/GB)

• Micron 9300 Pro 15.36TB NVMe U.2 Enterprise SSD (2019)

– Seq reads/writes: 3500 MB/s

– Random Read Ops (IOPS): 100K+

– Price: $1750 ($1.13/GB)

18.35Crooks & Zaharia CS162 © UCB Spring 2025

HDD vs. SSD Comparison

HDD SDD

Require seek +

rotation

No seeks

Not parallel (one

head)

Parallel

Brittle (moving parts) No moving parts

Random reads take

10s milliseconds

Random reads take

10s microseconds

Slow (Mechanical) Wears out

Cheap/large storage Expensive/smaller

storage

SSD prices falling faster than HDD!

18.36Crooks & Zaharia CS162 © UCB Spring 2025

SSD Summary

• Pros (vs. hard disk drives):

– Low latency, high throughput (eliminate seek/rotational delay)

– No moving parts:

» Very light weight, low power, silent, very shock insensitive

– Read at high speeds (limited by controller and I/O bus)

• Cons

– Small storage (0.1-0.5x disk), expensive (3-20x disk)

» Hybrid alternative: combine small SSD with large HDD

18.37Crooks & Zaharia CS162 © UCB Spring 2025

SSD Summary

• Pros (vs. hard disk drives):

– Low latency, high throughput (eliminate seek/rotational delay)

– No moving parts:

» Very light weight, low power, silent, very shock insensitive

– Read at high speeds (limited by controller and I/O bus)

• Cons

– Small storage (0.1-0.5x disk), expensive (3-20x disk)

» Hybrid alternative: combine small SSD with large HDD

– Asymmetric block write performance: read pg/erase/write pg

» Controller garbage collection (GC) algorithms have major effect on performance

– Limited drive lifetime

» 1-10K writes/page for MLC NAND

» Avg failure rate is 6 years, life expectancy is 9–11 years

• These are changing rapidly!

No
longer
true!

18.38Crooks & Zaharia CS162 © UCB Spring 2025

Recall: I/O and Storage Layers

High Level I/O

Low Level I/O

Syscall

File System

Device Driver

Streams

File Descriptors

open(), read(), write(), close(), …

Files/Directories/Indexes

Commands and Data Transfers

Disks, Flash, Controllers, DMA

Open File Descriptions

18.39Crooks & Zaharia CS162 © UCB Spring 2025

From Storage to File Systems

I/O API and
syscalls Variable-Size Buffer

File System Block

Logical Index,
Typically 4 KB

Hardware Devices

Memory Address

HDD

Sector(s)

Physical Index,
512B or 4KB

SSD

Flash Trans. Layer

Phys. Block & Page
Phys Index., 4KB

Sector(s)
Sector(s)

Erasure Page

18.40Crooks & Zaharia CS162 © UCB Spring 2025

Building a File System

Layer of OS that transforms block interface of disks (or other block devices) into
Files, Directories, etc.

18.41Crooks & Zaharia CS162 © UCB Spring 2025

Building a File System

OS as an illusionist:
Take limited hardware interface (array of blocks) and provide a more

convenient/useful interface with:

Naming: Find file by name, not block numbers

Organize file names with directories

Organization: Map files to blocks

Protection: Enforce access restrictions

Reliability: Keep files intact despite crashes, failures, etc.

18.42Crooks & Zaharia CS162 © UCB Spring 2025

User vs. System View of a File

User’s view:

– Durable Data Structures

System’s view (system call interface):

– Collection of Bytes (UNIX)

– Doesn’t matter to system what kind of data structures you want to store on disk!

System’s view (inside OS):

– Collection of blocks (a block is a logical transfer unit, while a sector is the physical
transfer unit)

– Block size sector size; in UNIX, block size is 4KB

18.43Crooks & Zaharia CS162 © UCB Spring 2025

Translation from User to System View

What happens if user says: “give me bytes 2 – 12?”

– Fetch block corresponding to those bytes

– Return just the correct portion of the block

What about writing bytes 2 – 12?

– Fetch block, modify relevant portion, write out block

Everything inside file system is in terms of whole-size blocks

File

System
File

(Bytes)

18.44Crooks & Zaharia CS162 © UCB Spring 2025

Disk Management

Basic entities on a disk:
File: user-visible group of blocks arranged sequentially in logical space

Directory: user-visible index mapping names to files

The disk is accessed as linear array of sectors

Old: Physical Position [cylinder, surface, sector]
New: Logical Block Addressing (LBA)

Every sector has integer address
Controller translates from address physical position

Shields OS from structure of disk

18.45Crooks & Zaharia CS162 © UCB Spring 2025

What Does the File System Need?

Track free disk blocks

– Need to know where to put newly written data

Track which blocks contain data for which files

– Need to know where to read a file from

Track files in a directory

– Find list of file's blocks given its name

Where do we maintain all of this?

– Somewhere on disk

18.46Crooks & Zaharia CS162 © UCB Spring 2025

O: STDIN

1: STDOUT

2: STDERR

Per-Process File
Descriptor Table

Global Open File
Description Table

Mode Flags Offset Phys

3

R 200U

4

U 200RW

Recall: FD & File Descriptors

Global Open File
Description Table

18.47Crooks & Zaharia CS162 © UCB Spring 2025

Critical Factors in File System Design

(Hard) Disks Performance !!!

Open before Read/Write

Size is determined as they are used !!!

Organized into directories

Need to carefully allocate / free blocks

18.48Crooks & Zaharia CS162 © UCB Spring 2025

Files & Directories

18.49Crooks & Zaharia CS162 © UCB Spring 2025

Files & Directories

18.50Crooks & Zaharia CS162 © UCB Spring 2025

Manipulating directories

System calls to access directories

– open / creat / readdir traverse the structure

– mkdir / rmdir add/remove entries

– link / unlink (rm)

libc support
– DIR * opendir (const char *dirname)

– struct dirent * readdir (DIR *dirstream)

– int readdir_r (DIR *dirstream, struct dirent *entry,
 struct dirent **result)

/usr

/usr/lib4.3

/usr/lib4.3/foo

/usr/lib

18.51Crooks & Zaharia CS162 © UCB Spring 2025

Components of a File System

Superblock object: information about file system

Free bitmaps: what is allocated/not allocated

Inode object: represents a specific file

Dentry object: directory entry, single component of a path

File object: open file associated with a process.

Blocks: How files are stored on disk

18.52Crooks & Zaharia CS162 © UCB Spring 2025

Components of a File System

File path

Directory
Structure

File
Header

StructureFile number

“inumber”

…

Data blocks

Inode

One Block = multiple sectors
Ex: 512 sector, 4K block

open(/laptop/Natacha/cs162/foo.txt)

18.53Crooks & Zaharia CS162 © UCB Spring 2025

O: STDIN

1: STDOUT

2: STDERR

Per-Process File
Descriptor Table

Global Open File
Description Table

Mode Flags Offset Phys

3

R 200U

4

U 200RW

The (In)famous Inode

Global Open File
Description Table

Inode Number

Inode Number

18.54Crooks & Zaharia CS162 © UCB Spring 2025

How to get the Inode number?

Look up in directory structure

Directory is a specialised file containing

<file_name : inode number> mappings

File number could be a file or another directory

Each <file_name : inode> mapping is called a directory entry

18.55Crooks & Zaharia CS162 © UCB Spring 2025

How to read a file from disk

Let’s read file /foo/bar.txt (Time goes downwards)

	Default Section
	Slide 1: CS162 Operating Systems and Systems Programming Lecture 18 Storage Devices & File Systems
	Slide 2: Recall : Simplified IO architecture
	Slide 3: Recall: How Does Processor Talk to Devices?
	Slide 4: Recall: Device Drivers
	Slide 5: Measuring Storage Device Performance
	Slide 6: Storage Devices
	Slide 7: Hard Disk Drives (HDDs)
	Slide 8: The Amazing Magnetic Disk
	Slide 9: The Amazing Magnetic Disk
	Slide 10: The Amazing Magnetic Disk
	Slide 11: Reading/Writing Data
	Slide 12: Reading/Writing Data
	Slide 13: Typical Numbers for Magnetic Disk
	Slide 14: Disk Performance Example
	Slide 15: Disk Performance Example
	Slide 16: When is Disk Performance Highest?
	Slide 17: Disk Scheduling (1/3)
	Slide 18: Disk Scheduling (1/3)
	Slide 19: Disk Scheduling (2/3)
	Slide 20: Disk Scheduling (3/3)
	Slide 21: Lots of Intelligence in the Device Controller
	Slide 22: Example of Current HDD
	Slide 23: Solid State Drives (SSDs)
	Slide 24: The Flash Cell
	Slide 25: Of Banks, Blocks, and Cells
	Slide 26: Low-level Flash Operations
	Slide 27: Low-level Flash Operations
	Slide 28: Low-level Flash Operations
	Slide 29: SSD Architecture
	Slide 30: SSD Architecture (Simplified)
	Slide 31: Flash Translation Layer (FTL)
	Slide 32: FTL – Two Systems Principles
	Slide 33: FTL Example
	Slide 34: Some Recent SSDs
	Slide 35: HDD vs. SSD Comparison
	Slide 36: SSD Summary
	Slide 37: SSD Summary
	Slide 38: Recall: I/O and Storage Layers
	Slide 39: From Storage to File Systems
	Slide 40: Building a File System
	Slide 41: Building a File System
	Slide 42: User vs. System View of a File
	Slide 43: Translation from User to System View
	Slide 44: Disk Management
	Slide 45: What Does the File System Need?
	Slide 46: Recall: FD & File Descriptors
	Slide 47: Critical Factors in File System Design
	Slide 48: Files & Directories
	Slide 49: Files & Directories
	Slide 50: Manipulating directories
	Slide 51: Components of a File System
	Slide 52: Components of a File System
	Slide 53: The (In)famous Inode
	Slide 54: How to get the Inode number?
	Slide 55: How to read a file from disk

