Demand Paging (Finished), General I/O

March 21\(^{th}\), 2024
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu
Recall: Page Fault \Rightarrow Demand Paging
Recall: Demand Paging Mechanisms

- PTE makes demand paging implementatable
 - Valid ⇒ Page in memory, PTE points at physical page
 - Not Valid ⇒ Page not in memory; use info in PTE to find it on disk when necessary
- Suppose user references page with invalid PTE?
 - Memory Management Unit (MMU) traps to OS
 - Resulting trap is a “Page Fault”
 - What does OS do on a Page Fault?:
 - Choose an old page to replace
 - If old page modified (“D=1”), write contents back to disk
 - Change its PTE and any cached TLB to be invalid
 - Load new page into memory from disk
 - Update page table entry, invalidate TLB for new entry
 - Continue thread from original faulting location
 - TLB for new page will be loaded when thread continued!
 - While pulling pages off disk for one process, OS runs another process from ready queue
 - Suspended process sits on wait queue
Recall: Demand Paging Cost Model

- Since Demand Paging like caching, can compute average access time! ("Effective Access Time")
 - EAT = Hit Rate x Hit Time + Miss Rate x Miss Time
 - EAT = Hit Time + Miss Rate x Miss Penalty

- Example:
 - Memory access time = 200 nanoseconds
 - Average page-fault service time = 8 milliseconds
 - Suppose p = Probability of miss, 1-p = Probably of hit
 - Then, we can compute EAT as follows:
 \[
 EAT = 200\text{ns} + p \times 8\text{ms} \\
 = 200\text{ns} + p \times 8,000,000\text{ns}
 \]

- If one access out of 1,000 causes a page fault, then EAT = 8.2 μs:
 - This is a slowdown by a factor of 40!

- What if want slowdown by less than 10%?
 - EAT < 200ns x 1.1 ⇒ p < 2.5 x 10^{-6}
 - This is about 1 page fault in 400,000!
What Factors Lead to Misses in Page Cache?

- **Compulsory Misses:**
 - Pages that have never been paged into memory before
 - How might we remove these misses?
 - Prefetching: loading them into memory before needed
 - Need to predict future somehow! More later

- **Capacity Misses:**
 - Not enough memory. Must somehow increase available memory size.
 - Can we do this?
 - One option: Increase amount of DRAM (not quick fix!)
 - Another option: If multiple processes in memory: adjust percentage of memory allocated to each one!

- **Conflict Misses:**
 - Technically, conflict misses don’t exist in virtual memory, since it is a “fully-associative” cache

- **Policy Misses:**
 - Caused when pages were in memory, but kicked out prematurely because of the replacement policy
 - How to fix? Better replacement policy
Page Replacement Policies

• Why do we care about Replacement Policy?
 – Replacement is an issue with any cache
 – Particularly important with pages
 » The cost of being wrong is high: must go to disk
 » Must keep important pages in memory, not toss them out

• FIFO (First In, First Out)
 – Throw out oldest page. Be fair – let every page live in memory for same amount of time.
 – Bad – throws out heavily used pages instead of infrequently used

• RANDOM:
 – Pick random page for every replacement
 – Typical solution for TLB’s. Simple hardware
 – Pretty unpredictable – makes it hard to make real-time guarantees

• MIN (Minimum):
 – Replace page that won’t be used for the longest time
 – Great (provably optimal), but can’t really know future…
 – But past is a good predictor of the future …
Replacement Policies (Con’t)

• LRU (Least Recently Used):
 – Replace page that hasn’t been used for the longest time
 – Programs have locality, so if something not used for a while, unlikely to be used in
 the near future.
 – Seems like LRU should be a good approximation to MIN.
• How to implement LRU? Use a list:
 – On each use, remove page from list and place at head
 – LRU page is at tail
• Problems with this scheme for paging?
 – Need to know immediately when page used so that can change position in list…
 – Many instructions for each hardware access
• In practice, people approximate LRU (more later)
Suppose we have 3 page frames, 4 virtual pages, and following reference stream:
- A B C A B D A D B C B

Consider FIFO Page replacement:

<table>
<thead>
<tr>
<th>Ref:</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>A</th>
<th>B</th>
<th>D</th>
<th>A</th>
<th>D</th>
<th>B</th>
<th>C</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page: 1</td>
<td>A</td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page: 2</td>
<td></td>
<td>B</td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page: 3</td>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- FIFO: 7 faults
- When referencing D, replacing A is bad choice, since need A again right away
Example: MIN / LRU

• Suppose we have the same reference stream:
 – A B C A B D A D B C B

• Consider MIN Page replacement:

 | Ref: Page: | A | B | C | A | B | D | A | D | B | C | B |
 |-----------|---|---|---|---|---|---|---|---|---|---|---|
 | 1 | A | | | | | | | C | | | |
 | 2 | | B | | | | | | | | | |
 | 3 | | | C | | | | D | | | | |

• MIN: 5 faults
 – Where will D be brought in? Look for page not referenced farthest in future

• What will LRU do?
 – Same decisions as MIN here, but won’t always be true!
Is LRU guaranteed to perform well?

- Consider the following: A B C D A B C D A B C D
- LRU Performs as follows (same as FIFO here):

<table>
<thead>
<tr>
<th>Ref</th>
<th>Page:</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>A</td>
<td></td>
<td>D</td>
<td></td>
<td>C</td>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>B</td>
<td></td>
<td>A</td>
<td></td>
<td>D</td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>C</td>
<td></td>
<td>B</td>
<td></td>
<td>A</td>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Every reference is a page fault!
- Fairly contrived example of working set of N+1 on N frames
When will LRU perform badly?

- Consider the following: A B C D A B C D A B C D
- LRU Performs as follows (same as FIFO here):

<table>
<thead>
<tr>
<th>Ref:</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page:</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>A</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Every reference is a page fault!
- MIN Does much better:
• One desirable property: When you add memory the miss rate drops (stack property)
 – Does this always happen?
 – Seems like it should, right?
• No: Bélády’s anomaly
 – Certain replacement algorithms (FIFO) don’t have this obvious property!
Adding Memory Doesn’t Always Help Fault Rate

• Does adding memory reduce number of page faults?
 – Yes for LRU and MIN
 – Not necessarily for FIFO! (Called Bélády’s anomaly)

<table>
<thead>
<tr>
<th>Ref:</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>A</th>
<th>B</th>
<th>E</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ref:</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>A</th>
<th>B</th>
<th>E</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• After adding memory:
 – With FIFO, contents can be completely different
 – In contrast, with LRU or MIN, contents of memory with X pages are a subset of contents with X+1 Page
Administrivia

• Still grading exam
 – Really sorry!
 – I’m promised that midterms will be released tonight…
• Project 2 in full swing
 – Stay on top of this one. Don’t wait until last moment to get pieces together
 – Decide how to your team is going divide up project 2
• Homework 4 also in full swing
 – Learn about memory allocation
• Make sure to fill out survey!
 – We really want to hear how you think we are doing
 – Also, will get a chance to suggest topics for the special topics lecture
 » Have talked about a wide variety of things in the past
• Spring Break!!!
 – Hope you all have a relaxing week.
Approximating LRU: Recall PTE bits

Which bits of a PTE entry can help us approximate LRU?

Remember Intel PTE:

- The “Present” bit (called “Valid” elsewhere):
 - \(P=0 \): Page is invalid and a reference will cause page fault
 - \(P=1 \): Page frame number is valid and MMU is allowed to proceed with translation

- The “Writable” bit (could have opposite sense and be called “Read-only”):
 - \(W=0 \): Page is read-only and cannot be written.
 - \(W=1 \): Page can be written

- The “Accessed” bit (called “Use” elsewhere):
 - \(A=0 \): Page has not been accessed (or used) since last time software set \(A \rightarrow 0 \)
 - \(A=1 \): Page has been accessed (or used) since last time software set \(A \rightarrow 0 \)

- The “Dirty” bit (called “Modified” elsewhere):
 - \(D=0 \): Page has not been modified (written) since PTE was loaded
 - \(D=1 \): Page has changed since PTE was loaded
Approximating LRU: Clock Algorithm

- **Clock Algorithm**: Arrange physical pages in circle with single clock hand
 - Approximate LRU (*approximation to approximation to MIN*)
 - Replace an old page, not the oldest page

- **Details**:
 - Hardware “use” bit per physical page (called “accessed” in Intel architecture):
 » Hardware sets *use* bit on each reference
 » If *use* bit isn’t set, means not referenced in a long time
 » Some hardware sets *use* bit in the TLB; must be copied back to PTE when TLB entry gets replaced
 - On page fault:
 » Advance clock hand (not real time)
 » Check *use* bit: 1 → used recently; clear and leave alone
 0 → selected candidate for replacement
Clock Algorithm: More details

- Will always find a page or loop forever?
 - Even if all use bits set, will eventually loop all the way around \(\Rightarrow \) FIFO
- What if hand moving slowly?
 - Good sign or bad sign?
 - Not many page faults
 - or find page quickly
- What if hand is moving quickly?
 - Lots of page faults and/or lots of reference bits set
- One way to view clock algorithm:
 - Crude partitioning of pages into two groups: young and old
 - Why not partition into more than 2 groups?
Nth Chance version of Clock Algorithm

- **Nth chance algorithm:** Give page N chances
 - OS keeps counter per page: # sweeps
 - On page fault, OS checks use bit:
 - 1 → clear use and also clear counter (used in last sweep)
 - 0 → increment counter; if count=N, replace page
 - Means that clock hand has to sweep by N times without page being used before page is replaced
- **How do we pick N?**
 - Why pick large N? Better approximation to LRU
 - If N ~ 1K, really good approximation
 - Why pick small N? More efficient
 - Otherwise might have to look a long way to find free page
- **What about “modified” (or “dirty”) pages?**
 - Takes extra overhead to replace a dirty page, so give dirty pages an extra chance before replacing?
 - Common approach:
 - Clean pages, use N=1
 - Dirty pages, use N=2 (and write back to disk when N=1)
Clock Algorithms Variations

- Do we really need hardware-supported “modified” bit?
 - No. Can emulate it using read-only bit
 » Need software DB of which pages are allowed to be written (needed this anyway)
 » We will tell MMU that pages have more restricted permissions than the actually do to force page faults (and allow us notice when page is written)
 - Algorithm (Clock-Emulated-M):
 » Initially, mark all pages as read-only ($W \rightarrow 0$), even writable data pages.
 Further, clear all software versions of the “modified” bit $\rightarrow 0$ (page not dirty)
 » Writes will cause a page fault. Assuming write is allowed, OS sets software “modified” bit $\rightarrow 1$, and marks page as writable ($W \rightarrow 1$).
 » Whenever page written back to disk, clear “modified” bit $\rightarrow 0$, mark read-only
Clock Algorithms Variations (continued)

• Do we really need a hardware-supported “use” bit?
 – No. Can emulate it similar to above (e.g. for read operation)
 » Kernel keeps a “use” bit and “modified” bit for each page
 – Algorithm (Clock-Emulated-Use-and-M):
 » Mark all pages as invalid, even if in memory.
 Clear emulated “use” bits → 0 and “modified” bits → 0 for all pages (not used, not dirty)
 » Read or write to invalid page traps to OS to tell use page has been used
 » OS sets “use” bit → 1 in software to indicate that page has been “used”.
 Further:
 1) If read, mark page as read-only, W → 0 (will catch future writes)
 2) If write (and write allowed), set “modified” bit → 1, mark page as writable (W → 1)
 » When clock hand passes, reset emulated “use” bit → 0 and mark page as invalid again
 » Note that “modified” bit left alone until page written back to disk

• Remember, however, clock is just an approximation of LRU!
 – Can we do a better approximation, given that we have to take page faults on some
 reads and writes to collect use information?
 – Need to identify an old page, not oldest page!
 – Answer: second chance list
Second-Chance List Algorithm (VAX/VMS)

- Split memory in two: Active list (RW), SC list (Invalid)
- Access pages in Active list at full speed
- Otherwise, Page Fault
 - Always move overflow page from end of Active list to front of Second-chance list (SC) and mark invalid
 - Desired Page On SC List: move to front of Active list, mark RW
 - Not on SC list: page in to front of Active list, mark RW; page out LRU victim at end of SC list
Second-Chance List Algorithm (continued)

- How many pages for second chance list?
 - If 0 ⇒ FIFO
 - If all ⇒ LRU, but page fault on every page reference
- Pick intermediate value. Result is:
 - Pro: Few disk accesses (page only goes to disk if unused for a long time)
 - Con: Increased overhead trapping to OS (software / hardware tradeoff)
- With page translation, we can adapt to any kind of access the program makes
 - Later, we will show how to use page translation / protection to share memory between threads on widely separated machines
- History: The VAX architecture did not include a “use” bit. Why did that omission happen???
 - Strecker (architect) asked OS people, they said they didn’t need it, so didn’t implement it
 - He later got blamed, but VAX did OK anyway
Free List

- Keep set of free pages ready for use in demand paging
 - Freelist filled in background by Clock algorithm or other technique ("Pageout demon")
 - Dirty pages start copying back to disk when enter list
- Like VAX second-chance list
 - If page needed before reused, just return to active set
- Advantage: faster for page fault
 - Can always use page (or pages) immediately on fault
Reverse Page Mapping (Sometimes called “Coremap”)

• When evicting a page frame, how to know which PTEs to invalidate?
 – Hard in the presence of shared pages (forked processes, shared memory, …)
• Reverse mapping mechanism must be very fast
 – Must hunt down all page tables pointing at given page frame when freeing a page
 – Must hunt down all PTEs when seeing if pages “active”
• Implementation options:
 – For every page descriptor, keep linked list of page table entries that point to it
 » Management nightmare – expensive
 – Linux: Object-based reverse mapping
 » Link together memory region descriptors instead (much coarser granularity)
Allocation of Page Frames (Memory Pages)

• How do we allocate memory among different processes?
 – Does every process get the same fraction of memory? Different fractions?
 – Should we completely swap some processes out of memory?
• Each process needs *minimum* number of pages
 – Want to make sure that all processes *that are loaded into memory* can make forward progress
 – Example: IBM 370 – 6 pages to handle SS MOVE instruction:
 » instruction is 6 bytes, might span 2 pages
 » 2 pages to handle *from*
 » 2 pages to handle *to*

• Possible Replacement Scopes:
 – Global replacement – process selects replacement frame from set of all frames; one process can take a frame from another
 – Local replacement – each process selects from only its own set of allocated frames
Fixed/Priority Allocation

- **Equal allocation** (Fixed Scheme):
 - Every process gets the same amount of memory
 - Example: 100 frames, 5 processes → process gets 20 frames

- **Proportional allocation** (Fixed Scheme)
 - Allocate according to the size of the process
 - Computation proceeds as follows:

 \[s_i = \text{size of process } p_i \text{ and } S = \sum s_i \]

 \[m = \text{total number of physical frames in the system} \]

 \[a_i = \text{(allocation for } p_i) = \frac{s_i}{S} \times m \]

- **Priority Allocation**:
 - Proportional scheme using priorities rather than size
 - Same type of computation as previous scheme
 - Possible behavior: If process \(p_i \) generates a page fault, select for replacement a frame from a process with lower priority number

- Perhaps we should use an adaptive scheme instead???
 - What if some application just needs more memory?
Page-Fault Frequency Allocation

- Can we reduce Capacity misses by dynamically changing the number of pages/application?

- Establish “acceptable” page-fault rate
 - If actual rate too low, process loses frame
 - If actual rate too high, process gains frame

- Question: What if we just don’t have enough memory?
Thrashing

- If a process does not have “enough” pages, the page-fault rate is very high. This leads to:
 - low CPU utilization
 - operating system spends most of its time swapping to disk
- **Thrashing** \(\equiv\) a process is busy swapping pages in and out with little or no actual progress
- Questions:
 - How do we detect Thrashing?
 - What is best response to Thrashing?
Locality In A Memory-Reference Pattern

• Program Memory Access Patterns have temporal and spatial locality
 – Group of Pages accessed along a given time slice called the “Working Set”
 – Working Set defines minimum number of pages for process to behave well

• Not enough memory for Working Set ⇒ Thrashing
 – Better to swap out process?
Working-Set Model Take 2

- **Δ** ≡ working-set window ≡ fixed number of page references
 - Example: 10,000 instructions
- **WSi** (working set of Process Pi) = total set of pages referenced in the most recent Δ (varies in time)
 - if Δ too small will not encompass entire locality
 - if Δ too large will encompass several localities
 - if Δ = ∞ ⇒ will encompass entire program
- **D** = Σ|WSi| ≡ total demand frames
- if D > m ⇒ Thrashing
 - Policy: if D > m, then suspend/swap out processes
 - This can improve overall system behavior by a lot!
What about Compulsory Misses?

• Recall that compulsory misses are misses that occur the first time that a page is seen
 – Pages that are touched for the first time
 – Pages that are touched after process is swapped out/swapped back in

• Clustering:
 – On a page-fault, bring in multiple pages “around” the faulting page
 – Since efficiency of disk reads increases with sequential reads, makes sense to read several sequential pages

• Working Set Tracking:
 – Use algorithm to try to track working set of application
 – When swapping process back in, swap in working set
Linux Memory Details?

• Memory management in Linux considerably more complex than the examples we have been discussing

• Memory Zones: physical memory categories
 – ZONE_DMA: < 16MB memory, DMAable on ISA bus
 – ZONE_NORMAL: 16MB → 896MB (mapped at 0xC0000000)
 – ZONE_HIGHMEM: Everything else (> 896MB)

• Each zone has 1 freelist, 2 LRU lists (Active/Inactive)

• Many different types of allocation
 – SLAB allocators, per-page allocators, mapped/unmapped

• Many different types of allocated memory:
 – Anonymous memory (not backed by a file, heap/stack)
 – Mapped memory (backed by a file)

• Allocation priorities
 – Is blocking allowed/etc
Linux Virtual memory map (Pre-Meltdown)

32-Bit Virtual Address Space

Kernel Addresses

User Addresses

0x00000000

0xC0000000

0xFFFFFFFF

896MB

Physical

0x00000000

0x00007FFFFFFF

0xFFFF800000000000

0xFFFFFFFFFFFFFFFF

3GB Total

1GB

Physical

128TiB

64 TiB

Physical

"Canonical Hole"

"Empty Space"

User Addresses

Kernel Addresses

0xFFFF800000000000

0x0000000000000000

0x0000000000000000

32-Bit Virtual Address Space

64-Bit Virtual Address Space
Pre-Meltdown Virtual Map (Details)

- Kernel memory not generally visible to user
 - Exception: special VDSO (virtual dynamically linked shared objects) facility that maps kernel code into user space to aid in system calls (and to provide certain actual system calls such as gettimeofday())

- Every physical page described by a “page” structure
 - Collected together in lower physical memory
 - Can be accessed in kernel virtual space
 - Linked together in various “LRU” lists

- For 32-bit virtual memory architectures:
 - When physical memory < 896MB
 » All physical memory mapped at 0xC0000000
 - When physical memory >= 896MB
 » Not all physical memory mapped in kernel space all the time
 » Can be temporarily mapped with addresses > 0xCC000000

- For 64-bit virtual memory architectures:
 - All physical memory mapped above 0xFFFF800000000000
Post Meltdown Memory Map

• Meltdown flaw (2018, Intel x86, IBM Power, ARM)
 – Exploit speculative execution to observe contents of kernel memory

 1: // Set up side channel (array flushed from cache)
 2: uchar array[256 * 4096];
 3: flush(array); // Make sure array out of cache (not an instruction!)
 4: try {
 // … catch and ignore SIGSEGV (illegal access)
 5: uchar result = *(uchar *)kernel_address; // Try access!
 6: uchar dummy = array[result * 4096]; // leak info!
 7: } catch(); // Could use signal() and setjmp/longjmp
 8: // scan through 256 array slots to determine which loaded

 – Some details:
 » Reason we skip 4096 for each value: avoid hardware cache prefetch
 » Note that value detected by fact that one cache line is loaded
 » Catch and ignore page fault: set signal handler for SIGSEGV, can use setjump/longjmp….

• Patch: Need different page tables for user and kernel
 – Without PCID tag in TLB, flush TLB twice on syscall (800% overhead!)
 – Need at least Linux v 4.14 which utilizes PCID tag in new hardware to avoid flushing when change address space

• Fix: better hardware without timing side-channels
Conclusion

• Replacement policies
 – FIFO: Place pages on queue, replace page at end
 – MIN: Replace page that will be used farthest in future
 – LRU: Replace page used farthest in past

• Working Set:
 – Set of pages touched by a process recently
 – Point of Replacement algorithms is to try to keep working set in memory

• Clock Algorithm: Approximation to LRU
 – Arrange all pages in circular list
 – Sweep through them, marking as not “in use”
 – If page not “in use” for one pass, than can replace

• Nth-chance clock algorithm: Another approximate LRU
 – Give pages multiple passes of clock hand before replacing

• Second-Chance List algorithm: Yet another approximate LRU
 – Divide pages into two groups, one of which is truly LRU and managed on page faults.