
CS162
Operating Systems and
Systems Programming

Lecture 17

General I/O, Storage Devices

Professor Natacha Crooks & Matei Zaharia

https://cs162.org/

Slides based on prior slide decks from David Culler, Ion Stoica, John Kubiatowicz, Alison Norman and Lorenzo Alvisi

Lec 17.2Crooks & Zaharia CS162 © UCB Spring 2025

Course Map

• Introduction

• OS Concepts

• Concurrency

• Scheduling

• Memory Management

• Devices and file systems

• Reliability, networking and cloud

Lec 17.3Crooks & Zaharia CS162 © UCB Spring 2025

Recall: Five Components of a Computer

From “Computer Organization and Design” by Hennesy & Patterson

Lec 17.4Crooks & Zaharia CS162 © UCB Spring 2025

CPU: You need to get out more!

Input/output is the mechanism through which the

computer communicates with the outside world

Lec 17.5Crooks & Zaharia CS162 © UCB Spring 2025

Want Standard Interfaces to Devices
• Block Devices: e.g. disk drives, tape drives, DVD-ROM

– Access blocks of data
– Commands include open(), read(), write(), seek()
– Raw I/O or file-system access

• Character Devices: e.g. keyboards, mice, serial ports, some USB devices
– Single characters at a time
– Commands include get(), put()

• Network Devices: e.g. Ethernet, Wireless, Bluetooth
– Different enough from block/character to have own interface
– Unix and Windows include socket interface

» Separates network protocol from network operation
» Includes polling and connection management functionality

– Usage: pipes, FIFOs, streams, queues, mailboxes

Lec 17.6Crooks & Zaharia CS162 © UCB Spring 2025

IO Subsystem: Abstraction, abstraction, abstraction

Processor

Memory

OS Memory

Process 1 Process 2 Process 3

OS Hardware Virtualization

Virtual Machine Abstraction

IO Layer

IO Devices

Lec 17.7Crooks & Zaharia CS162 © UCB Spring 2025

IO Subsystem: Abstraction, abstraction, abstraction

• This code works for pretty much any device

 FILE fd = fopen("/dev/something", "rw");
 for (int i = 0; i < 10; i++) {
 fprintf(fd, "Count %d\n", i);
 }
 close(fd);

– Why? Because code that controls devices (“device driver”) implements standard
interface

• We will try to get a flavor for what is involved in actually controlling devices in
rest of this lecture

– Can only scratch surface!

Lec 17.8Crooks & Zaharia CS162 © UCB Spring 2025

Requirements of I/O layer

• But… thousands of devices, each slightly different

» OS: How can we standardize the interfaces to these devices?

• Devices unreliable: media failures and transmission errors
» OS: How can we make them reliable???

• Devices unpredictable and/or slow
» OS: How can we manage them if we don’t know what they will do or how they will

perform?

Lec 17.9Crooks & Zaharia CS162 © UCB Spring 2025

Simplified IO architecture

Follows a hierarchical structure
because of cost: the faster the
bus, the more expensive it is

Lec 17.10Crooks & Zaharia CS162 © UCB Spring 2025

Intel’s Z270 Chipset

Lec 17.11Crooks & Zaharia CS162 © UCB Spring 2025

Sky Lake I/O: PCH

• Platform Controller Hub

– Connected to processor with
proprietary bus

» Direct Media Interface

• Types of I/O on PCH:

– USB, Ethernet

– Thunderbolt 3

– Audio, BIOS support

– More PCI Express (lower speed
than on Processor)

– SATA (for Disks)Sky Lake
System Configuration

Lec 17.12Crooks & Zaharia CS162 © UCB Spring 2025

Recall: Range of Timescales

Jeff Dean:

“Numbers

Everyone

Should Know”

Lec 17.13Crooks & Zaharia CS162 © UCB Spring 2025

Example: Device Transfer Rates in Mb/s (Sun Enterprise 6000)

Device rates vary over 12 orders
of magnitude!!!

Lec 17.14Crooks & Zaharia CS162 © UCB Spring 2025

Two questions

• What is a bus?

• How does the processor talk to the devices?

Lec 17.15Crooks & Zaharia CS162 © UCB Spring 2025

What’s a bus?

• Common set of wires for communication among multiple hardware devices plus
protocols for carrying out data transfer transactions

• Split into three parts: control lines, address lines, and data lines

• Protocol: initiator requests access, arbitration to grant, identification of
recipient, handshake to convey address, length, data

• High bandwidth close to processor, and slower but more flexible farther out

Lec 17.16Crooks & Zaharia CS162 © UCB Spring 2025

Why a Bus?

• Buses let us connect 𝑛 devices over a single set of wires, connections, and
protocols

– 𝑂 𝑛2 relationships with 1 set of wires (!)

• Downside: Only one transaction at a time

– The rest must wait

– “Arbitration” aspect of bus protocol ensures the rest wait

Lec 17.17Crooks & Zaharia CS162 © UCB Spring 2025

PCI Bus Evolution

• PCI started life out
as a parallel bus
(send bits on many wires in parallel)

• But a parallel bus has many limitations
– Hard to keep all the wires sending/receiving in sync

– Slowest devices must be able to tell what’s happening (e.g., for arbitration)
» Bus speed is set to that of the slowest device!

Lec 17.18Crooks & Zaharia CS162 © UCB Spring 2025

PCI Express (PCIe) “Bus”

• No longer a parallel bus

• Really a collection of fast serial channels or “lanes”

• Devices can use as many as they need to achieve a desired bandwidth

• Slow devices don’t have to share with fast ones

• One of the successes of device abstraction in Linux was the ability to migrate
from PCI to PCI Express

– The physical interconnect changed completely, but the old API still worked

Lec 17.19Crooks & Zaharia CS162 © UCB Spring 2025

Example PCI Architecture

CPURAM
Memory

Bus

USB
Controller

SATA
Controller

Scanner

Hard
DiskDVD

ROM

Root
Hub

Hub Webcam

Mouse Keyboard

PCI #1

PCI #0

PCI Bridge

PCI Slots

Host Bridge

ISA Bridge

ISA
Controller

Legacy
Devices

Lec 17.20Crooks & Zaharia CS162 © UCB Spring 2025

How does the Processor Talk to Devices?

• CPU interacts with a Device Controller
– Contains a set of registers that can be read and written
– May contain memory for request queues, etc.

• Processor accesses registers in two ways:
– Port-Mapped I/O: in/out instructions

» Example from the Intel architecture: out 0x21,AL
– Memory-mapped I/O: load/store instructions

» Registers/memory appear in physical address space
» I/O accomplished with load and store instructions

Device
Controller

read
write

control
status

Addressable
Memory
and/or
QueuesRegisters

(port 0x20)

Hardware
Controller

Memory Mapped
Region: 0x8f008020

Bus
Interface

Address +
Data

Interrupt Request

Processor Memory Bus

CPU

Regular
Memory

Interrupt
Controller

Bus
Adaptor

Bus
Adaptor

Other Devices
or Buses

Lec 17.21Crooks & Zaharia CS162 © UCB Spring 2025

How does the processor talk to devices?

• Remember, it’s all about abstractions!

It’s a file!

(What the user sees)

Interface
(What the OS sees)

Internals
(What is needed to implement the

device abstraction)

Hardware interface device
presents to OS

Device implementation

Microcontroller Memory Other chips

Device Controller

Status registers Command regs. Data

Lec 17.22Crooks & Zaharia CS162 © UCB Spring 2025

How does the processor talk to devices?

Interface
(What the OS sees)

Registers

Status Command Data

Port-Mapped I/O:
Privileged in/out instructions

Example in Intel assembly: out 0x21,AL

Memory-mapped I/O: load/store instructions

Registers/memory appear in physical address space
I/O accomplished with load and store instructions

Lec 17.23Crooks & Zaharia CS162 © UCB Spring 2025

Example: Port-Mapped I/O in Pintos Speaker Driver
Pintos: threads/io.hPintos: devices/speaker.c

Lec 17.24Crooks & Zaharia CS162 © UCB Spring 2025

Example: Memory-Mapped Display Controller

• Memory-Mapped:

– Hardware maps control registers and display memory into physical
address space

» Addresses set by HW jumpers or at boot time

– Simply writing to display memory (also called the “frame buffer”)
changes image on screen

» Addr: 0x8000F000 — 0x8000FFFF

– Writing graphics description to cmd queue

» Say enter a set of triangles describing some scene

» Addr: 0x80010000 — 0x8001FFFF

– Writing to the command register may cause on-board graphics
hardware to do something

» Say render the above scene

» Addr: 0x0007F004

• Can protect with address translation

Display

Memory

0x8000F000

0x80010000

Physical

Address

Space

Status0x0007F000

Command0x0007F004

Graphics

Command

Queue

0x80020000

Lec 17.25Crooks & Zaharia CS162 © UCB Spring 2025

A Simple Protocol for Talking to a Device

Protocol does a lot of polling

How can we lower this overhead?

CPU is responsible for moving data

Lec 17.26Crooks & Zaharia CS162 © UCB Spring 2025

Interrupt-driven I/O vs Polling

• Use hardware interrupts to avoid busy polling:

– Allows CPU to process another task. Will get notified when task is done

– Interrupt handler will read data & error code

• Is it always better to use interrupts?

• Actual devices often support both polling and interrupts: e.g. wait for an
interrupt from the network card to read the first packet, then poll its input queue
memory space to look for other received packets

Lec 17.27Crooks & Zaharia CS162 © UCB Spring 2025

From programmed I/O to direct memory access

• With programmed I/O (our simple protocol):
– CPU issues read request

– Device interrupts CPU with data

– CPU writes data to memory

– Pros: simple hardware. Cons: Poor CPU is always busy!

• With direct-memory-access (DMA):
– CPU sets up DMA request

» Gives controller access to memory bus

– Device puts data on bus & RAM accepts it

– Device interrupts CPU when done

Device CPU RAM

Device RAM

Lec 17.28Crooks & Zaharia CS162 © UCB Spring 2025

DMA in more detail

Lec 17.29Crooks & Zaharia CS162 © UCB Spring 2025

How can the OS handle one all devices

• How do we fit devices with specific interfaces into the OS, which should remain
general?

– Build a “device neutral” OS and hide details of devices from most of OS

• Abstraction to the rescue!

– Device Drivers encapsulate all specifics of device interaction

– Implement device neutral interfaces

Lec 17.30Crooks & Zaharia CS162 © UCB Spring 2025

Device Drivers

• Device Driver: Device-specific code in the kernel that interacts directly with that
device hardware

– Supports a standard, internal interface
– Special device-specific configuration supported with the ioctl() system call

• Device Drivers are typically divided into two pieces:
– Top half: accessed in call path from system calls

» implements a set of standard, cross-device calls like open(), close(), read(),
write(), ioctl(), strategy()

» This is the kernel’s interface to the device driver
» Top half will start I/O to device, may put thread to sleep until finished

– Bottom half: run as interrupt routine
» Gets input or transfers next block of output
» May wake sleeping threads if I/O now complete

• Your body is 90% water, your OS is 70% device-drivers

Lec 17.31Crooks & Zaharia CS162 © UCB Spring 2025

Putting it together: Life Cycle of An I/O Request

Device Driver
Top Half

Device Driver
Bottom Half

Device
Hardware

Kernel I/O
Subsystem

User
Program

Lec 17.32Crooks & Zaharia CS162 © UCB Spring 2025

Conclusion
• I/O Devices Types:

– Many different speeds (0.1 bytes/sec to 50+ GBytes/sec)
– Different Access Patterns:

» Block Devices, Character Devices, Network Devices

• Device Controllers: Hardware that controls actual device
– Processor Accesses through I/O instructions (port-mapped I/O) or load/store to

special physical memory addresses (memory-mapped I/O)

• Notification mechanisms
– Interrupts
– Polling: Report results through status register that processor looks at periodically

• Device drivers interface to I/O devices

– Provide clean Read/Write interface to OS above

– Manipulate devices through PIO, DMA & interrupt handling

Lec 17.33Crooks & Zaharia CS162 © UCB Spring 2025

How Does User Deal with Timing?

• Blocking Interface: “Wait”

– When request data (e.g. read() system call), put process to sleep
until data is ready

– When write data (e.g. write() system call), put process to sleep
until device is ready for data

• Non-blocking Interface: “Don’t Wait”

– Returns quickly from read or write request with count of bytes
successfully transferred

– Read may return nothing, write may write nothing

• Asynchronous Interface: “Tell Me Later”

– When request data, take pointer to user’s buffer, return immediately;
later kernel fills buffer and notifies user (or lets user check/poll)

– When send data, take pointer to user’s buffer, return immediately;
later kernel takes data and notifies user (or lets user check/poll)

Lec 17.34Crooks & Zaharia CS162 © UCB Spring 2025

Storage Devices

Magnetic disks

– Storage that rarely becomes corrupted

– Large capacity at low cost

– Block level random access (except for SMR – later!)

– Slow performance for random access

– Better performance for sequential access

Flash memory

– Storage that rarely becomes corrupted

– Capacity at intermediate cost (5-20x disk)

– Block level random access

– Good performance for reads; worse for random writes

– Wear patterns issue

	Slide 1: CS162 Operating Systems and Systems Programming Lecture 17 General I/O, Storage Devices
	Slide 2: Course Map
	Slide 3: Recall: Five Components of a Computer
	Slide 4: CPU: You need to get out more!
	Slide 5: Want Standard Interfaces to Devices
	Slide 6: IO Subsystem: Abstraction, abstraction, abstraction
	Slide 7: IO Subsystem: Abstraction, abstraction, abstraction
	Slide 8: Requirements of I/O layer
	Slide 9: Simplified IO architecture
	Slide 10: Intel’s Z270 Chipset
	Slide 11: Sky Lake I/O: PCH
	Slide 12: Recall: Range of Timescales
	Slide 13: Example: Device Transfer Rates in Mb/s (Sun Enterprise 6000)
	Slide 14: Two questions
	Slide 15: What’s a bus?
	Slide 16: Why a Bus?
	Slide 17: PCI Bus Evolution
	Slide 18: PCI Express (PCIe) “Bus”
	Slide 19: Example PCI Architecture
	Slide 20: How does the Processor Talk to Devices?
	Slide 21: How does the processor talk to devices?
	Slide 22: How does the processor talk to devices?
	Slide 23: Example: Port-Mapped I/O in Pintos Speaker Driver
	Slide 24: Example: Memory-Mapped Display Controller
	Slide 25: A Simple Protocol for Talking to a Device
	Slide 26: Interrupt-driven I/O vs Polling
	Slide 27: From programmed I/O to direct memory access
	Slide 28: DMA in more detail
	Slide 29: How can the OS handle one all devices
	Slide 30: Device Drivers
	Slide 31: Putting it together: Life Cycle of An I/O Request
	Slide 32: Conclusion
	Slide 33: How Does User Deal with Timing?
	Slide 34: Storage Devices

