
CS162
Operating Systems and
Systems Programming

Lecture 15

Virtual Memory (2)

Professor Natacha Crooks & Matei Zaharia
https://cs162.org/

Slides based on prior slide decks from David Culler, Ion Stoica, John Kubiatowicz, Alison Norman and Lorenzo Alvisi

15.2Crooks & Zaharia CS162 © UCB Fall 2025

Recall: Memory Management Wishlist

Memory Protection

Memory Sharing

Flexible Memory Placement

Support for Sparse Addresses

Runtime Lookup Efficiency

Compact Translation Table

15.3Crooks & Zaharia CS162 © UCB Fall 2025

Recall: Increasingly powerful mechanisms

No protection. Living life on the
edge

Base & Bound

Base & Bound with Relocation

Segmentation

Paging

Can access all memory

Absolute memory addressing. Hard to relocate

Internal fragmentation when address space is
sparse

External fragmentation as assigning variably
sized chunks

15.4Crooks & Zaharia CS162 © UCB Fall 2025

Paging

Divide logical address space of process into fixed sized chunks
called pages

View physical memory as an array of fixed-sized slots called page
frames

Each page frame can contain a
single virtual-memory page

Pages should be small to minimise internal fragmentation (1K-
16k)

15.5Crooks & Zaharia CS162 © UCB Fall 2025

How to Implement Simple Paging?

OffsetVirtual Page #

Interpret virtual address as two components

no. of bits specifies no.
of pages in VA space

no. of bits specifies size
of page

15.6Crooks & Zaharia CS162 © UCB Fall 2025

How to Implement Simple Paging?

12 bits20 bits

Interpret virtual address as two components

2^20 pages Page Size
2^12 = 4096 B = 4KB

15.7Crooks & Zaharia CS162 © UCB Fall 2025

A (Simplified) Page Table

A page table stores
virtual-to-physical address translations

One page table per process. Lives in memory.

Address stored in the in the Page Table Base Register

 PTBR value saved/restored in PCB on context switch

15.8Crooks & Zaharia CS162 © UCB Fall 2025

How to access a byte?

Extract page number (first p bits)

Map virtual page number into a frame number
(also called physical page number) using a page table

Extract offset (last o bits)

Convert to physical memory location: access byte at offset in frame

15.9Crooks & Zaharia CS162 © UCB Fall 2025

A (Simplified) Page Table

Physical Page Number
(Page Frame)

Frame f

Virtual Page Offset
 p o

Memory

p
Frame f o

15.10Crooks & Zaharia CS162 © UCB Fall 2025

Example: A Mini Page Table
Assume we have a 64 bytes (2^6) of physical memory

Assume we want pages of 4 bytes (2^2)

How long should our addresses be?
6 bits

How many offset bits should we assign?
2 bits

How many virtual pages can we have?
6 bit addresses: 2 bit for offsets, 4 bits for VPN.

2^4 = 16 pages

15.11Crooks & Zaharia CS162 © UCB Fall 2025

Page Table

Example: A Mini Page Table

2 bits4 bits

VMemory

A B C D0x0

0x4

0x8

A B C D

E F G H

I J K L

…

…

0

1

2

4

PMemory

…

A B C D

E F G H

I J K L

15.12Crooks & Zaharia CS162 © UCB Fall 2025

Page Table

Example: A Mini Page Table

2 bits4 bits

VMemory

A B C D0x0

0x4

0x8

A B C D

E F G H

I J K L

…

…

0

1

2

4

PMemory

…

A B C D

E F G H

I J K L

15.13Crooks & Zaharia CS162 © UCB Fall 2025

Page Table

Example: A Mini Page Table

010010

VMemory

A B C D0x0

0x4

0x8

A B C D

E F G H

I J K L

…

…

0

1

2

4

PMemory

…

A B C D

E F G H

0x9 =

I J K L

15.14Crooks & Zaharia CS162 © UCB Fall 2025

Page Table

Step 1: Extract Virtual Page Number

010010

VMemory

A B C D0x0

0x4

0x8

A B C D

E F G H

I J K L

…

…

0

1

2

4

PMemory

…

A B C D

E F G H

0x9 =

I J K L
Virtual Page Number:

0010 => 2.

Access Index 2 of Page Table

15.15Crooks & Zaharia CS162 © UCB Fall 2025

Page Table

Step 2: Identify Physical Page Number

010010

VMemory

A B C D0x0

0x4

0x8

A B C D

E F G H

I J K L

…

…

0

1

2

4

PMemory

…

A B C D

E F G H

0x9 =

I J K L

15.16Crooks & Zaharia CS162 © UCB Fall 2025

Page Table

Step 3: Extract Frame Offset

010010

VMemory

A B C D0x0

0x4

0x8

A B C D

E F G H

I J K L

…

…

0

1

2

4

PMemory

…

A B C D

E F G H

0x9 =

I J K L

15.17Crooks & Zaharia CS162 © UCB Fall 2025

Page Table

Step 3: Extract Frame Offset

010010

VMemory

A B C D0x0

0x4

0x8

A B C D

E F G H

I J K L

…

…

0

1

2

4

PMemory

…

A B C D

E F G H

0x9 =

I J K L
Offset:

01 => 1.

Access Byte 1 of Frame

15.18Crooks & Zaharia CS162 © UCB Fall 2025

Page Table

Step 3: Extract Frame Offset

010010

VMemory

A B C D0x0

0x4

0x8

A B C D

E F G H

I J K L

…

…

0

1

2

4

PMemory

…

A B C D

E F G H

0x9 =

I J K L

15.19Crooks & Zaharia CS162 © UCB Fall 2025

Page Table

Step 4: Convert to Physical Address

010010

VMemory

A B C D0x0

0x4

0x8

A B C D

E F G H

I J K L

…

…

0

1

2

4

PMemory

…

A B C D

E F G H

0x9 =

I J K L

Physical Page Number * Page Size
+ Offset

=
0 * 4 + 1 = 1

15.20Crooks & Zaharia CS162 © UCB Fall 2025

What is a page table entry? (32 bits)

 P: Present (same as “valid” bit in other architectures)

 W: Writeable

 U: User accessible

 PWT: Page write transparent: external cache write-through

 PCD: Page cache disabled (page cannot be cached)

 A: Accessed: page has been accessed recently

 D: Dirty: page has been modified recently

 PS: Page Size

Page Frame Number
(Physical Page Number)

Free
(OS) 0

PS D A

PCD
PW

T U W P

01234567811-931-12

Size of page table entry:
PFN (20 bits) + 12 bits for access

control/caching

4 bytes

15.21Crooks & Zaharia CS162 © UCB Fall 2025

The Great Power of the PTE

Demand Paging

Keep only active pages in memory
Place others on disk and mark their

PTEs invalid

Copy-on-Write

UNIX fork gives copy of parent address
space to child. Use combination of page

sharing + marking pages as read-only

Zero Fill On Demand

New data pages must carry no
information

Mark PTEs as invalid; page fault on
use gets zeroed page

Data Breakpoints

For debugger, mark instruction page as
read-only. Will trigger page-fault when

try to execute

15.22Crooks & Zaharia CS162 © UCB Fall 2025

Paging & Sharing

Processes share a page by each mapping a page of their own virtual address space
to the same frame

Use protection bits for fine-sharing

Page Table Page Table

PageTablePtrBPageTablePtrA

Page Frame
PFN, RPFN, R0x0171 0x2141

15.23Crooks & Zaharia CS162 © UCB Fall 2025

Where is page sharing used ?

Kernel region of every process has the same page table entries

Different processes running same binary!
Do not need to duplicate code segments

Shared-memory segments between different processes

15.24Crooks & Zaharia CS162 © UCB Fall 2025

Memory Layout for Linux 32-bit

15.25Crooks & Zaharia CS162 © UCB Fall 2025

An aside: Meltdown

From the paper:

Meltdown is a novel attack that allows overcoming memory
isolation completely by providing a simple way for any user process
to read the entire kernel memory of the machine it executes on,
including all physical memory mapped in the kernel region.
Meltdown does not exploit any software vulnerability, i.e., it works
on all major operating systems.

1. raise_exception();
2. // the line below is never reached
3. access(probe_array[data * 4096]);]

15.26Crooks & Zaharia CS162 © UCB Fall 2025

Are we done?

How big can a page table get on x86 (32 bits)?

4KB page => 2^12
2^32/2^12 => 2^20 pages

2^20 * 4 bytes = 4 MB (approx.)
That’s (not) a lot per process!!

How big can a page table get on x86 (64 bits)?

4KB page => 2^12
2^64/2^12 => 2^52 pages

2^20 * 8 bytes = 36 petabytes (approx.)
That’s a lot per process!!

15.27Crooks & Zaharia CS162 © UCB Fall 2025

Limitations of paging

Space overhead
With a 64-bit address space, size of page table can be huge

Time overhead
Accessing data now requires two memory accesses must also access page

table, to find mapped frame

Internal Fragmentation
4KB pages

15.28Crooks & Zaharia CS162 © UCB Fall 2025

The Secret to the Whole of CS

Batching

Caching

Indirection

Specialised Hardware

15.29Crooks & Zaharia CS162 © UCB Fall 2025

Sparsity

Address space is sparse, i.e. has holes that are not mapped to physical
memory

Most this space is taken up by page tables
mapped to nothing

Process has access to full 2^64 bytes (virtually)

Physically, that would be 17,179,869,184
gigabytes

15.30Crooks & Zaharia CS162 © UCB Fall 2025

Paging the page table: 2-level paging

Tree of Page Tables

OffsetOuter Page # Inner Page #

Outer Page Table

…

Inner Page
Table

…

PageTablePointer

Physical Memory

…Inner Page
Table

…
Inner Page

Table

…

15.31Crooks & Zaharia CS162 © UCB Fall 2025

V2: What is a page table entry? (32 bits)

 P: Present (same as “valid” bit in other architectures)

 W: Writeable

 U: User accessible

 PWT: Page write transparent: external cache write-through

 PCD: Page cache disabled (page cannot be cached)

 A: Accessed: page has been accessed recently

 D: Dirty: page has been modified recently

 PS: Page Size

Inner Page Table VAddress or PFN Free
(OS) 0

PS D A

PCD
PW

T U W P

01234567811-931-12

15.32Crooks & Zaharia CS162 © UCB Fall 2025

Paging the page table: 2-level paging

Tree of Page Tables

OffsetOuter Page # Inner Page #

Defines size of a pageEnsure that fits
on a single page

Number of top-
level pages

15.33Crooks & Zaharia CS162 © UCB Fall 2025

Paging the page table: 2-level paging

Tree of Page Tables

OffsetOuter Page # Inner Page #

4 KB
12 bits

10 bits

Want to make sure that
inner page table fits in a

page!
2^12/2^2 = 2^10

10 bits

15.34Crooks & Zaharia CS162 © UCB Fall 2025

Example: x86 classic 32-bit address translation

Top-level page-table: Page Directory

Inner page-table: Page Directory Entries

15.35Crooks & Zaharia CS162 © UCB Fall 2025

stack

Example Address Space View

1111 1111
stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

page1 # offset

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

0101 000

0111 000

1110 0000

page2 #

111
110 null
101 null
100
011 null
010
001 null
000

11 11101
10 11100
01 10111
00 10110

11 01101
10 01100
01 01011
00 01010

11 00101
10 00100
01 00011
00 00010

11 null
10 10000
01 01111
00 01110

Page Tables
(level 2)

Page Table
(level 1)

1111 0000

15.36Crooks & Zaharia CS162 © UCB Fall 2025

Sharing with multilevel page tables

4KB

10 bits 10 bits 12 bits

Virtual
Address: OffsetVirtual

P2 index
Virtual
P1 index

PageTablePtr

PageTablePtr’

Entire regions of the address space can be efficiently sharedEntire regions of the address space can be efficiently shared

15.37Crooks & Zaharia CS162 © UCB Fall 2025

Marking entire regions as invalid!

4KB

10 bits 10 bits 12 bits

Virtual
Address: OffsetVirtual

P2 index
Virtual
P1 index

PageTablePtr

If region of address space unused, can mark entire inner region as invalid

15.38Crooks & Zaharia CS162 © UCB Fall 2025

Marking entire regions as invalid!

4KB

10 bits 10 bits 12 bits

Virtual
Address: OffsetVirtual

P2 index
Virtual
P1 index

PageTablePtr

If region of address space unused, can mark entire inner region as invalid

15.39Crooks & Zaharia CS162 © UCB Fall 2025

Has this helped?

Assuming 10/10/12 split:
Size of Page Table

Outer: (2^10 * 4 bytes) +
Inner: 2^10 * (2^10 * 4 bytes)

Overhead of indirection! BUT Marking inner pages as invalid helps when address
spaces are sparse

Downside: now have to do
two memory accesses for translation

15.40Crooks & Zaharia CS162 © UCB Fall 2025

Offset

Physical Address

Use segments for top level. Paging within each segment.

Used in x86 (32 bit).
Code Segment, Data Segment, etc.

Paged Segmentation

page #0

page #1

page #3

page #4

page #5

V,R

V,R

page #2 V,R,W

V,R,W

N

V,R,W

Virtual
Address: OffsetVirtual

Page #
Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

Access
Error>

page #2 V,R,W

Physical
Page #

Check Permissions

Access
Error

15.41Crooks & Zaharia CS162 © UCB Fall 2025

Physical
Address:
(40-50 bits)

12bit OffsetPhysical Page #

X86 64 bits has a four-level page table!

9 bits 9 bits 12 bits

48-bit Virtual
Address:

OffsetVirtual
P2 index

Virtual
P1 index

PageTablePtr

Virtual
P3 index

Virtual
P4 index

9 bits 9 bits

4096-byte pages (12 bit offset)
Page tables also 4k bytes (pageable)

15.42Crooks & Zaharia CS162 © UCB Fall 2025

Inverted Page Table

A single page table that
has an entry for each physical page of the

system

Each entry contains process ID + which virtual
page maps to physical page

Physical memory much smaller than virtual
memory

Size proportional to size of physical memory

Inverted Table

0

 1

 2

 3

0

 1

 2

 3

Virtual: 0x1021

 NULL

 Virtual: 0x0123

 NULL

15.43Crooks & Zaharia CS162 © UCB Fall 2025

Inverted Page Table

Don’t we have it backwards?
Add a hash table. Virtual memory can only map to specific physical frames

Inverted Table

0

 1

 2

 3

Virtual: 0x1021

 NULL

 Virtual: 0x09

 NULL

Anchor Hash Table

010010

Hash(0010)

15.44Crooks & Zaharia CS162 © UCB Fall 2025

Address Translation Comparison
Advantages Disadvantages

Simple Segmentation Fast context switching (segment
map maintained by CPU) External fragmentation

Paging (Single-Level) No external fragmentation
Fast and easy allocation

Large table size (~ virtual
memory)
Internal fragmentation

Paged Segmentation Table size ~ # of pages in virtual
memory
Fast and easy allocation

Multiple memory references
per page accessMulti-Level Paging

Inverted Page Table Table size ~ # of pages in
physical memory

Hash function more complex
No cache locality of page table

15.45Crooks & Zaharia CS162 © UCB Fall 2025

How is the Translation Accomplished?

MMU must translate virtual address to physical address on every instruction fetch, load
or store

What does the MMU need to do to translate an address?
Read, check, and update PTE

(set accessed bit/dirty bit on write)

CPU MMU
Virtual
Addresses

Physical
Addresses

15.46Crooks & Zaharia CS162 © UCB Fall 2025

How can we speedup translation?

MMU must make at least 2 memory reads to walk page table. Slow!

Use specialized hardware to
cache virtual-physical memory translations!

Introducing the Translation Lookaside Buffer (TLB)

15.47Crooks & Zaharia CS162 © UCB Fall 2025

Recall: CS61c Caching Concept

Cache: a repository for copies that can be accessed more quickly than the original

Only good if:
Frequent case frequent enough and
Infrequent case not too expensive

Important measure
 Average Access time =

 (Hit Rate x Hit Time) + (Miss Rate x Miss Time)

15.48Crooks & Zaharia CS162 © UCB Fall 2025

Recall: In Machine Structures (eg. 61C) …

Caching is the key to memory system performance

Processor

Main
Memory
(DRAM)

100ns1 ns

Cache
(SRAM)

Processor

Main
Memory
(DRAM)

Access time = 100ns

15.49Crooks & Zaharia CS162 © UCB Fall 2025

Average Memory Access Time (AMAT)
= (Hit Rate x HitTime) + (Miss Rate x MissTime)

Where HitRate + MissRate = 1

HitRate = 90% => AMAT = (0.9 x 1) + (0.1 x 101)=11 ns
HitRate = 99% => AMAT = (0.99 x 1) + (0.01 x 101)=2.01 ns

MissTimeL1 includes
HitTimeL1+MissPenaltyL1 ≡ HitTimeL1 +AMATL2

Recall: In Machine Structures (eg. 61C) …

15.50Crooks & Zaharia CS162 © UCB Fall 2025

Why Does Caching Help? Locality!

Temporal Locality (Locality in Time):
Keep recently accessed data items closer to processor

Spatial Locality (Locality in Space):
Move contiguous blocks to the upper levels

15.51Crooks & Zaharia CS162 © UCB Fall 2025

Recall: Memory Hierarchy

Take advantage of the principle of locality to:

1) Present the illusion of having as much memory as in the cheapest technology

2) Provide average speed similar to that offered by the fastest technology

Recall: fast but small/expensive. Slow but large!

15.52Crooks & Zaharia CS162 © UCB Fall 2025

Recall: Memory Hierarchy

Core

Core

Secondary
 Storage

(Disk)

Processor

Main
Memory
(DRAM)

1 10,000,000
 (10 ms)

Speed (ns): 10-30 100

100BsSize (bytes): MBs GBs TBs

0.3 3

10kBs 100kBs

Secondary
 Storage

(SSD)

100,000
(0.1 ms)

100GBs

Address Translation needs
to occur here

Page table lives here
(perhaps cached)

15.53Crooks & Zaharia CS162 © UCB Fall 2025

How do we make Address Translation Fast?

Cache results of recent translations !
Cache Page Table Entries using Virtual Page # as the key

Processor
(core) Cache(s)

Physical
Memory

MMU

page
tables

PTBR

V_Pg M1 : <Phs_Frame #1, V, … >

V_Pg M2 : <Phs_Frame #2, V, … >

V_Pg Mk : <Phs_Frame #k, V, … >

15.54Crooks & Zaharia CS162 © UCB Fall 2025

Translation Look-Aside Buffer

Record recent Virtual Page # to Physical Frame # translation

If present, have the physical address without reading any of the page tables !!!

Caches the end-to-end result

15.55Crooks & Zaharia CS162 © UCB Fall 2025

Caching Applied to Address Translation

Does page locality exist?

Instruction accesses spend a lot of time on the same page (since
accesses sequential)

Stack accesses have definite locality of reference

CPU Physical
Memory

TLB

Translate
(MMU)

No

Virtual
Address

Physical
Address

Yes
Cached?

	CS162�Operating Systems and�Systems Programming�Lecture 15���Virtual Memory (2)
	Recall: Memory Management Wishlist
	Recall: Increasingly powerful mechanisms
	Paging
	How to Implement Simple Paging?
	How to Implement Simple Paging?
	A (Simplified) Page Table
	How to access a byte?
	A (Simplified) Page Table
	Example: A Mini Page Table
	Example: A Mini Page Table
	Example: A Mini Page Table
	Example: A Mini Page Table
	Step 1: Extract Virtual Page Number
	Step 2: Identify Physical Page Number
	Step 3: Extract Frame Offset
	Step 3: Extract Frame Offset
	Step 3: Extract Frame Offset
	Step 4: Convert to Physical Address
	What is a page table entry? (32 bits)
	The Great Power of the PTE
	Paging & Sharing
	Where is page sharing used ?
	Memory Layout for Linux 32-bit
	An aside: Meltdown
	Are we done?
	Limitations of paging
	The Secret to the Whole of CS
	Sparsity
	Paging the page table: 2-level paging
	V2: What is a page table entry? (32 bits)
	Paging the page table: 2-level paging
	Paging the page table: 2-level paging
	Example: x86 classic 32-bit address translation
	Example Address Space View
	Sharing with multilevel page tables
	Marking entire regions as invalid!
	Marking entire regions as invalid!
	Has this helped?
	Paged Segmentation
	X86 64 bits has a four-level page table!
	Inverted Page Table
	Inverted Page Table
	Address Translation Comparison
	How is the Translation Accomplished?
	How can we speedup translation?
	Recall: CS61c Caching Concept
	Recall: In Machine Structures (eg. 61C) …
	Recall: In Machine Structures (eg. 61C) …
	Why Does Caching Help? Locality!
	Recall: Memory Hierarchy
	Recall: Memory Hierarchy
	How do we make Address Translation Fast?
	Translation Look-Aside Buffer
	Caching Applied to Address Translation

