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Recall: Memory Management Wishlist

Memory Protection

Memory Sharing

Flexible Memory Placement

Support for Sparse Addresses

Runtime Lookup Efficiency

Compact Translation Table
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Recall: Increasingly powerful mechanisms

No protection. Living life on the 
edge

Base & Bound

Base & Bound with Relocation

Segmentation

Paging

Can access all memory

Absolute memory addressing. Hard to relocate

Internal fragmentation when address space is 
sparse

External fragmentation as assigning variably 
sized chunks
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Paging

Divide logical address space of process into fixed sized chunks 
called pages

View physical memory as an array of fixed-sized slots called page 
frames

Each page frame can contain a 
single virtual-memory page

Pages should be small to minimise internal fragmentation (1K-
16k)
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How to Implement Simple Paging?

OffsetVirtual Page #

Interpret virtual address as two components

no. of bits specifies no. 
of pages in VA space

no. of bits specifies size 
of page
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How to Implement Simple Paging?

12 bits20 bits

Interpret virtual address as two components

2^20 pages Page Size
2^12 = 4096 B = 4KB
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A (Simplified) Page Table

A page table stores 
virtual-to-physical address translations

One page table per process. Lives in memory. 

Address stored in the in the Page Table Base Register

 PTBR value saved/restored in PCB on context switch
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How to access a byte?

Extract page number (first p bits)

Map virtual page number into a frame number 
(also called physical page number) using a page table 

Extract offset (last o bits)

Convert to physical memory location: access byte at offset in frame
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A (Simplified) Page Table

Physical Page Number 
(Page Frame)

Frame f

Virtual Page        Offset
    p            o

Memory

p
Frame f o
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Example: A Mini Page Table
Assume we have a 64 bytes (2^6) of physical memory

Assume we want pages of 4 bytes (2^2)

How long should our addresses be?
6 bits

How many offset bits should we assign?
2 bits

How many virtual pages can we have?
6 bit addresses: 2 bit for offsets, 4 bits for VPN. 

2^4 = 16 pages
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Page Table

Example: A Mini Page Table

2 bits4 bits

VMemory

A   B   C   D0x0

0x4

0x8

A   B   C   D

E   F   G   H

I   J    K   L

…

…

0

1

2

4

PMemory

…

A   B   C   D

E   F   G   H

I   J    K   L
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Page Table

Example: A Mini Page Table

2 bits4 bits

VMemory

A   B   C   D0x0

0x4

0x8

A   B   C   D

E   F   G   H

I   J    K   L

…

…

0

1

2

4

PMemory

…

A   B   C   D

E   F   G   H

I   J    K   L
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Page Table

Example: A Mini Page Table

010010

VMemory

A   B   C   D0x0

0x4

0x8

A   B   C   D

E   F   G   H

I   J    K   L

…

…

0

1

2

4

PMemory

…

A   B   C   D

E   F   G   H

0x9 = 

I   J    K   L
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Page Table

Step 1: Extract Virtual Page Number

010010

VMemory

A   B   C   D0x0

0x4

0x8

A   B   C   D

E   F   G   H

I   J    K   L

…

…

0

1

2

4

PMemory

…

A   B   C   D

E   F   G   H

0x9 = 

I   J    K   L
Virtual Page Number:

0010 => 2.

Access Index 2 of Page Table
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Page Table

Step 2: Identify Physical Page Number

010010

VMemory

A   B   C   D0x0

0x4

0x8

A   B   C   D

E   F   G   H

I   J    K   L

…

…

0

1

2

4

PMemory

…

A   B   C   D

E   F   G   H

0x9 = 

I   J    K   L
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Page Table

Step 3: Extract Frame Offset

010010

VMemory

A   B   C   D0x0

0x4

0x8

A   B   C   D

E   F   G   H

I   J    K   L

…

…

0

1

2

4

PMemory

…

A   B   C   D

E   F   G   H

0x9 = 

I   J    K   L
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Page Table

Step 3: Extract Frame Offset

010010

VMemory

A   B   C   D0x0

0x4

0x8

A   B   C   D

E   F   G   H

I   J    K   L

…

…

0

1

2

4

PMemory

…

A   B   C   D

E   F   G   H

0x9 = 

I   J    K   L
Offset: 

01 => 1.

Access Byte 1 of Frame
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Page Table

Step 3: Extract Frame Offset

010010

VMemory

A   B   C   D0x0

0x4

0x8

A   B   C   D

E   F   G   H

I   J    K   L

…

…

0

1

2

4

PMemory

…

A   B   C   D

E   F   G   H

0x9 = 

I   J    K   L
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Page Table

Step 4: Convert to Physical Address

010010

VMemory

A   B   C   D0x0

0x4

0x8

A   B   C   D

E   F   G   H

I   J    K   L

…

…

0

1

2

4

PMemory

…

A   B   C   D

E   F   G   H

0x9 = 

I   J    K   L

Physical Page Number * Page Size 
+ Offset 

= 
0 * 4 + 1 = 1
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What is a page table entry? (32 bits)

  P: Present (same as “valid” bit in other architectures) 

  W: Writeable

  U: User accessible

  PWT: Page write transparent: external cache write-through

  PCD: Page cache disabled (page cannot be cached)

  A: Accessed: page has been accessed recently

  D: Dirty: page has been modified recently

  PS: Page Size

Page Frame Number
(Physical Page Number)

Free
(OS) 0

PS D A

PCD
PW

T U W P

01234567811-931-12

Size of page table entry:
PFN (20 bits) + 12 bits for access 

control/caching

4 bytes
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The Great Power of the PTE

Demand Paging

Keep only active pages in memory
Place others on disk and mark their 

PTEs invalid

Copy-on-Write

UNIX fork gives copy of parent address 
space to child.  Use combination of page 

sharing + marking pages as read-only

Zero Fill On Demand

New data pages must carry no 
information 

Mark PTEs as invalid; page fault on 
use gets zeroed page

Data Breakpoints

For debugger, mark instruction page as 
read-only. Will trigger page-fault when 

try to execute
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Paging & Sharing

Processes share a page by each mapping a page of their own virtual address space 
to the same frame

Use protection bits for fine-sharing

Page Table Page Table

PageTablePtrBPageTablePtrA

Page Frame
PFN,     RPFN,     R0x0171 0x2141
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Where is page sharing used ?

Kernel region of every process has the same page table entries

Different processes running same binary! 
Do not need to duplicate code segments

Shared-memory segments between different processes
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Memory Layout for Linux 32-bit
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An aside: Meltdown

From the paper:

Meltdown is a novel attack that allows overcoming memory 
isolation completely by providing a simple way for any user process 
to read the entire kernel memory of the machine it executes on, 
including all physical memory mapped in the kernel region. 
Meltdown does not exploit any software vulnerability, i.e., it works 
on all major operating systems. 

1. raise_exception(); 
2. // the line below is never reached 
3. access(probe_array[data * 4096]);]
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Are we done?

How big can a page table get on x86 (32 bits)? 

4KB page => 2^12
2^32/2^12 => 2^20 pages

2^20 * 4 bytes = 4 MB (approx.)
That’s (not) a lot per process!!

How big can a page table get on x86 (64 bits)? 

4KB page => 2^12
2^64/2^12 => 2^52 pages

2^20 * 8 bytes = 36 petabytes (approx.)
That’s a lot per process!!
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Limitations of paging

Space overhead 
With a 64-bit address space, size of page table can be huge

Time overhead 
Accessing data now requires two memory accesses must also access page 

table, to find mapped frame

Internal Fragmentation
4KB pages
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The Secret to the Whole of CS

Batching

Caching

Indirection

Specialised Hardware
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Sparsity

Address space is sparse, i.e. has holes that are not mapped to physical 
memory

Most this space is taken up by page tables 
mapped to nothing

Process has access to full 2^64 bytes (virtually)

Physically, that would be 17,179,869,184 
gigabytes
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Paging the page table: 2-level paging

Tree of Page Tables

OffsetOuter Page # Inner Page #

Outer Page Table

…

Inner Page 
Table

…

PageTablePointer

Physical Memory

…Inner Page 
Table

…
Inner Page 

Table

…
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V2: What is a page table entry? (32 bits)

  P: Present (same as “valid” bit in other architectures) 

  W: Writeable

  U: User accessible

  PWT: Page write transparent: external cache write-through

  PCD: Page cache disabled (page cannot be cached)

  A: Accessed: page has been accessed recently

  D: Dirty: page has been modified recently

  PS: Page Size

Inner Page Table  VAddress or PFN Free
(OS) 0

PS D A

PCD
PW

T U W P

01234567811-931-12
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Paging the page table: 2-level paging

Tree of Page Tables

OffsetOuter Page # Inner Page #

Defines size of a pageEnsure that fits 
on a single page

Number of top-
level pages
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Paging the page table: 2-level paging

Tree of Page Tables

OffsetOuter Page # Inner Page #

4 KB
12 bits

10 bits

Want to make sure that 
inner page table fits in a 

page!
2^12/2^2 = 2^10

10 bits
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Example: x86 classic 32-bit address translation

Top-level page-table: Page Directory

Inner page-table:  Page Directory Entries
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stack

Example Address Space View

1111 1111
stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

page1 # offset

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

0101 000

0111 000

1110 0000

page2 #

111       
110   null
101   null
100   
011   null
010   
001   null
000   

11   11101    
10   11100
01   10111
00   10110

11   01101    
10   01100
01   01011
00   01010

11   00101    
10   00100
01   00011
00   00010

11     null  
10   10000
01   01111
00   01110

Page Tables
(level 2)

Page Table
(level 1)

1111 0000
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Sharing with multilevel page tables

4KB

10 bits 10 bits 12 bits

Virtual 
Address: OffsetVirtual

P2 index
Virtual
P1 index

PageTablePtr

PageTablePtr’

Entire regions of the address space can be efficiently sharedEntire regions of the address space can be efficiently shared
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Marking entire regions as invalid!

4KB

10 bits 10 bits 12 bits

Virtual 
Address: OffsetVirtual

P2 index
Virtual
P1 index

PageTablePtr

If region of address space unused, can mark entire inner region as invalid
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Marking entire regions as invalid!

4KB

10 bits 10 bits 12 bits

Virtual 
Address: OffsetVirtual

P2 index
Virtual
P1 index

PageTablePtr

If region of address space unused, can mark entire inner region as invalid



15.39Crooks & Zaharia CS162 © UCB Fall 2025

Has this helped?

Assuming 10/10/12 split:
Size of Page Table

Outer: (2^10 * 4 bytes) + 
Inner: 2^10 * (2^10 * 4 bytes) 

Overhead of indirection! BUT Marking inner pages as invalid helps when address 
spaces are sparse

Downside: now have to do 
two memory accesses for translation
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Offset

Physical Address

Use segments for top level. Paging within each segment. 

Used in x86 (32 bit). 
Code Segment, Data Segment, etc. 

Paged Segmentation

page #0

page #1

page #3

page #4

page #5

V,R

V,R

page #2 V,R,W

V,R,W

N

V,R,W

Virtual 
Address: OffsetVirtual

Page #
Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

Access
Error>

page #2 V,R,W

Physical
Page #

Check Permissions

Access
Error
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Physical
Address:
(40-50 bits)

12bit OffsetPhysical Page #

X86 64 bits has a four-level page table!

9 bits 9 bits 12 bits

48-bit Virtual 
Address:

OffsetVirtual
P2 index

Virtual
P1 index

PageTablePtr

Virtual
P3 index

Virtual
P4 index

9 bits 9 bits

4096-byte pages (12 bit offset)
Page tables also 4k bytes (pageable)
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Inverted Page Table

A single page table that
has an entry for each physical page of the 

system

Each entry contains process ID + which virtual 
page maps to physical page

Physical memory much smaller than virtual 
memory

Size proportional to size of physical memory

Inverted Table

0

  1

  2

  3

0

  1

  2

  3

Virtual: 0x1021

  NULL

  Virtual: 0x0123

  NULL
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Inverted Page Table

Don’t we have it backwards?
Add a hash table. Virtual memory can only map to specific physical frames 

Inverted Table

0

  1

  2

  3

Virtual: 0x1021

  NULL

  Virtual: 0x09

  NULL

Anchor Hash Table

010010

Hash(0010)
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Address Translation Comparison
Advantages Disadvantages

Simple Segmentation Fast context switching (segment 
map maintained by CPU) External fragmentation

Paging (Single-Level) No external fragmentation
Fast and easy allocation

Large table size (~ virtual 
memory)
Internal fragmentation

Paged Segmentation Table size ~ # of pages in virtual 
memory
Fast and easy allocation

Multiple memory references 
per page accessMulti-Level Paging

Inverted Page Table Table size ~ # of pages in 
physical memory

Hash function more complex
No cache locality of page table
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How is the Translation Accomplished?

MMU must translate virtual address to physical address on every instruction fetch, load 
or store

What does the MMU need to do to translate an address?
Read, check, and update PTE 

(set accessed bit/dirty bit on write)

CPU MMU
Virtual
Addresses

Physical
Addresses
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How can we speedup translation?

MMU must make at least 2 memory reads to walk page table. Slow!

Use specialized hardware to 
cache virtual-physical memory translations!

Introducing the Translation Lookaside Buffer (TLB)
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Recall: CS61c Caching Concept

Cache: a repository for copies that can be accessed more quickly than the original

Only good if:
Frequent case frequent enough and
Infrequent case not too expensive

Important measure
 Average Access time = 

 (Hit Rate x Hit Time) + (Miss Rate x Miss Time)
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Recall: In Machine Structures (eg. 61C) …

Caching is the key to memory system performance

Processor

Main
Memory
(DRAM)

100ns1 ns

Cache
(SRAM)

Processor

Main
Memory
(DRAM)

Access time = 100ns
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Average Memory Access Time (AMAT)
= (Hit Rate x HitTime) + (Miss Rate x MissTime)

Where HitRate + MissRate = 1

HitRate = 90% => AMAT = (0.9 x 1) + (0.1 x 101)=11 ns
HitRate = 99% => AMAT = (0.99 x 1) + (0.01 x 101)=2.01 ns

MissTimeL1 includes 
HitTimeL1+MissPenaltyL1 ≡ HitTimeL1 +AMATL2

Recall: In Machine Structures (eg. 61C) …
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Why Does Caching Help? Locality!

Temporal Locality (Locality in Time):
Keep recently accessed data items closer to processor

Spatial Locality (Locality in Space):
Move contiguous blocks to the upper levels 
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Recall: Memory Hierarchy

Take advantage of the principle of locality to:

1) Present the illusion of having as much memory as in the cheapest technology

2) Provide average speed similar to that offered by the fastest technology

Recall: fast but small/expensive. Slow but large!
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Recall: Memory Hierarchy

Core

Core

Secondary
 Storage 

(Disk)

Processor

Main
Memory
(DRAM)

1 10,000,000 
   (10 ms)

Speed (ns): 10-30 100

100BsSize (bytes): MBs GBs TBs

0.3 3

10kBs 100kBs

Secondary
 Storage 

(SSD)

100,000
(0.1 ms)

100GBs

Address Translation needs 
to occur here

Page table lives here 
(perhaps cached)
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How do we make Address Translation Fast?

Cache results of recent translations !
Cache Page Table Entries using Virtual Page # as the key

Processor
(core) Cache(s)

Physical
Memory

MMU

page 
tables

PTBR

V_Pg M1 : <Phs_Frame #1, V, … >

V_Pg M2 : <Phs_Frame #2, V, … >

V_Pg Mk : <Phs_Frame #k, V, … >
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Translation Look-Aside Buffer

Record recent Virtual Page # to Physical Frame # translation

If present, have the physical address without reading any of the page tables !!!

Caches the end-to-end result
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Caching Applied to Address Translation

Does page locality exist?

Instruction accesses spend a lot of time on the same page (since 
accesses sequential)

Stack accesses have definite locality of reference

CPU Physical
Memory

TLB

Translate
(MMU)

No

Virtual
Address

Physical
Address

Yes
Cached?
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