
CS162
Operating Systems and
Systems Programming

Lecture 14

Virtual Memory

Professor Natacha Crooks & Matei Zaharia
https://cs162.org/

Slides based on prior slide decks from David Culler, Ion Stoica, John Kubiatowicz, Alison Norman and Lorenzo Alvisi

14.3Crooks & Zaharia CS162 © UCB Spring 2025

Topic Breakdown

Virtualizing the CPU

Process Abstraction and API

Threads and Concurrency

Scheduling

Virtualizing Memory
Virtual Memory

Paging

Persistence
IO devices

File Systems

Distributed Systems
Challenges with distribution

Data Processing & Storage

Virtualised!

14.4Crooks & Zaharia CS162 © UCB Spring 2025

Recall: A process

A process is an instance of a running program

Memory
(address space)

CPU Registers IO information

Store code,
data, stack,

heap

Program
Counter, Stack

Pointer
Regular

registers

Open files (and
others)

14.5Crooks & Zaharia CS162 © UCB Spring 2025

Recall: Address Space

Set of memory addresses accessible to program
 (for read or write)

Processor
registers

PC:
SP:

0x000…

0xFFF…

Code Segment

Static Data

Heap

Stack Segment

sbrk syscall

14.6Crooks & Zaharia CS162 © UCB Spring 2025

Memory Virtualization Objectives

Isolation Flexibility

Infinite Resources

How can we do so efficiently?

14.7Crooks & Zaharia CS162 © UCB Spring 2025

Interposing on Process Behaviours

OS interposes on process’s IO operations
 via Syscalls

OS interposes on process’s CPU usage
Via Preemption

How can OS interpose on process’s memory access?

Too slow for the OS to interpose every memory access.
Translation: hardware support to accelerate common case.

Uncommon cases “trap” into the OS to handle

14.8Crooks & Zaharia CS162 © UCB Spring 2025

An Address

A memory address refers to the location of a byte in memory.

Most machines are byte-addressable

K bits

2^K
things

14.9Crooks & Zaharia CS162 © UCB Spring 2025

Bits & Addresses

If an address space has 32 bits,
how many unique addresses do I have?

2^32 = (4294967296)
2^64 = more than the atoms of the universe

How many bits necessary to exclusively enumerate 4 elements?
2 bits => 2^2 = 4. => log2(4)

How many 32 bit numbers fit in a 2^32 address space?
32 bits -> 4 bytes -> 2^2.

2^32/2^2 = 2^30, 1 billion

14.10Crooks & Zaharia CS162 © UCB Spring 2025

Increasingly powerful mechanisms

No protection. Living life on the
edge

Base & Bound

Base & Bound with Relocation

Segmentation

Paging

14.11Crooks & Zaharia CS162 © UCB Spring 2025

Uniprogramming: I’m all alone

Application always runs at same place in physical memory since only one application at
a time

Application can access any physical address

Application given illusion of dedicated machine by giving it reality of a dedicated
machine

0x00000000

0xFFFFFFFF

Application

Operating
System

Va
lid

 3
2-

bi
t

Ad
dr

es
se

s

14.12Crooks & Zaharia CS162 © UCB Spring 2025

Memory Translation Through Relocation

Use loader/linker to adjust addresses when program loaded
into memory.

Memory Translation Through Relocation

0x00000000

0xFFFFFFFF

Application1

Operating
System

Application2 0x00020000

14.13Crooks & Zaharia CS162 © UCB Spring 2025

0x1300 00000020
 … …
0x1900 8C2004C0
0x1904 0C000680
0x1908 2021FFFF
0x190C 14200642
 …
0x1A00

data1: dw 32
 …
start: lw r1,0(data1)
 jal checkit
loop: addi r1, r1, -1
 bnz r1, loop
 …
checkit: …

Process view of memory Physical addresses

0x0900

0xFFFF

0x0300

0x0000

Physical
Memory

App X

8C2004C0
0C000680
2021FFFF
14200642

000000200x1300

0x1900

Memory Translation Through Relocation

14.14Crooks & Zaharia CS162 © UCB Spring 2025

Memory Translation Through Relocation

With this solution, no protection: bugs in any program can cause
other programs to crash or even the OS

0x00000000

0xFFFFFFFF

Application1

Operating
System

Application2 0x00020000

14.15Crooks & Zaharia CS162 © UCB Spring 2025

Recall: A Bug’s Tail

The character could leave the game area and start overwriting other running
programs and kernel memory.

One of the worst bugs I ever had to deal with was in this game. Once the game player made it to the Colony,
every so often the system would crash and burn at totally random times. You might be playing for ten

minutes when it happened or ten hours, but it would just die in a totally random way

There was a slow-moving slug like creature that knew how to follow the game player’s trail. When it came
across another creature, rather than bouncing off and risk losing the trail, I made it so that it would destroy
the other creature and stay on target to find you. This worked great, except that on some rare occasions,
this slug could do to a wall what it did to the other creatures. That is, it could delete it. This meant that the
virtual door was now open for this creature to explore the rest of the RAM on the Macintosh, deleting and

modifying it as it went along. Of course, it was just a matter of time before it found some juicy code. In other
words, the bug was a REAL bug.

14.16Crooks & Zaharia CS162 © UCB Spring 2025

Recall: Super Mario Land 2

Mario could exit a level and explore the entire memory of the system

14.17Crooks & Zaharia CS162 © UCB Spring 2025

Increasingly powerful mechanisms

No protection. Living life on the
edge

Base & Bound

Base & Bound with Relocation

Segmentation

Paging

14.18Crooks & Zaharia CS162 © UCB Spring 2025

Recall: Memory Protection

OS and applications both resident in memory

Application should not read/write kernel memory
 (or other apps memory)

14.19Crooks & Zaharia CS162 © UCB Spring 2025

Base And Bound

Hardware to the rescue!
Base and Bound registers

Base
Bound

Code Data Heap Stack

Address Space
Process 1

Bound

Code Data Heap Stack

Address Space
Process 2

Base

14.20Crooks & Zaharia CS162 © UCB Spring 2025

Base & Bound

Hardware to the rescue!
Base and Bound registers

CPU OK?

Memory Reference

Continue

Generate Exception

No

Yes

14.21Crooks & Zaharia CS162 © UCB Spring 2025

Base & Bound

Kernel Mode executes without
Base and Bound registers

Loader rewrites address to the desired offset in physical memory.

Software Relocation

movl 1000, %eax movl 4000, %eax

14.22Crooks & Zaharia CS162 © UCB Spring 2025

Limitations of Base & Bound

1) No expandable memory
Static memory allocation

2) No memory Sharing
Cannot share memory between

processes

3) Non-Relative Memory
Addresses

Location of code & data
determined at runtime

4) External Fragmentation
Cannot relocate/move programs.

Leads to fragmentation

5) Internal Fragmentation
Address Space must be

contiguous

14.23Crooks & Zaharia CS162 © UCB Spring 2025

Fragmentation in More Detail

process 6

process 5

process 2

OS

process 6

process 5

OS

process 6

process 5

OS

process 9

process 6

process 9

OS

process 10

process 11

External Fragmentation

Free chunks between allocated regions

14.24Crooks & Zaharia CS162 © UCB Spring 2025

Fragmentation in More Detail

Internal Fragmentation

Space inside allocated address space may not be fully used.

Data

Stack

Heap

0xFFFFFFFF

14.25Crooks & Zaharia CS162 © UCB Spring 2025

Limitations of Base & Bound

1) No expandable memory
Static memory allocation

2) No memory Sharing
Cannot share memory between

processes

3) Non-Relative Memory
Addresses

Location of code & data
determined at runtime

4) External Fragmentation
Cannot relocate/move programs.

Leads to fragmentation

5) Internal Fragmentation
Address Space must be

contiguous

14.26Crooks & Zaharia CS162 © UCB Spring 2025

Increasingly powerful mechanisms

No protection. Living life on the
edge

Base & Bound

Base & Bound with Relocation

Segmentation

Paging

14.27Crooks & Zaharia CS162 © UCB Spring 2025

Base & Bound With Hardware Relocation

14.28Crooks & Zaharia CS162 © UCB Spring 2025

Address Translation

Physical address space

Set of memory addresses supported by
hardware

Virtual address space

Set of memory addresses that process can
“touch”

14.29Crooks & Zaharia CS162 © UCB Spring 2025

Base And Bound With Relocation

Each program is written and compiled as
if it is loaded at address zero

Memory references are translated by the processor
physical address = virtual address + base

CPU OK?

Virtual Memory Reference

Generate Exception

No

Yes
Translate

Virtual Memory Reference
+ Base

14.30Crooks & Zaharia CS162 © UCB Spring 2025

Memory Management Unit

Physical
Addresses

CPU MMU

Virtual
Addresses

Hardware that performs translation of virtual
to physical addresses

14.31Crooks & Zaharia CS162 © UCB Spring 2025

Limitations of Base & Bound with Relocation

1) No expandable memory
Static memory allocation

2) No memory Sharing
Cannot share memory between

processes

3) Non-Relative Memory
Addresses

Location of code & data
determined at runtime

4) External Fragmentation
Cannot relocate/move programs.

Leads to fragmentation
5) Internal Fragmentation
Address Space must be

contiguous≈

≈

14.32Crooks & Zaharia CS162 © UCB Spring 2025

Increasingly powerful mechanisms

No protection. Living life on the
edge

Base & Bound

Base & Bound with Relocation

Segmentation

Paging

14.33Crooks & Zaharia CS162 © UCB Spring 2025

Segmentation

Create a base and bounds pair per logical segment of the address space

A segment is a contiguous portion of the address space of a particular length

Can place each segment independently at different locations in memory

14.34Crooks & Zaharia CS162 © UCB Spring 2025

Segmentation

1

3

2

4

user view of
memory space

1

4

2

3

physical
memory space

1

2

Minimises internal fragmentation
(code, data, heap, stack segments placed independently)

14.35Crooks & Zaharia CS162 © UCB Spring 2025

Implementation of a multi-segment model

Segment map resides in processor

Segment number mapped into base/limit pair

Base added to offset to generate physical address

Base0 Limit0
Base1 Limit1
Base2 Limit2
Base3 Limit3
Base4 Limit4
Base5 Limit5
Base6 Limit6
Base7 Limit7

0:
1:
2:
3:
4:
5:
6:
7:
8:

14.36Crooks & Zaharia CS162 © UCB Spring 2025

Address Translation

A logical address consists of two parts: a segment identifier (top bits) and an offset that
specifies the relative address within the segment (bottom bits)

OffsetSeg #

14.37Crooks & Zaharia CS162 © UCB Spring 2025

Address Translation

Assume we have 16 bit addresses

Question: if I have 4 segments (code, data, stack, heap), how many segment bits
do I need?

Log(4) = 2

Segment 0: 00
Segment 1: 01
Segment 2: 10
Segment 3: 11

14.38Crooks & Zaharia CS162 © UCB Spring 2025

Address Translation

Assume we have 16 bit addresses

Question: if I have 4 segments (code, data, stack, heap), how many segment bits
do I need?

Question: if I have 7 segments and an address size of 32 bits, what is the
maximum size of a segment?

Log(4) = 2

Log2(7) = 2.8 => 3 bits. 2^(32-3)=2^29

Question: what is the maximum size of each segment?

16-2 = 14 bits left. => 2^14 bytes

14.39Crooks & Zaharia CS162 © UCB Spring 2025

Example: Four Segments (16 bit addresses)
Seg ID # Base Limit

0 (code) 0x4000 0x0800
1 (data) 0x4800 0x1400
2 (shared) 0xF000 0x1000
3 (stack) 0x0000 0x3000

OffsetSeg
014 1315

0x4000

0x0000

0x8000

0xC000

Virtual
Address Space

Virtual Address Format

0x0000

Physical
Address Space

14.40Crooks & Zaharia CS162 © UCB Spring 2025

Example: Four Segments (16 bit addresses)
Seg ID # Base Limit

0 (code) 0x4000 0x0800
1 (data) 0x4800 0x1400
2 (shared) 0xF000 0x1000
3 (stack) 0x0000 0x3000

OffsetSeg
014 1315

0x4000

0x0000

0x8000

0xC000

Virtual
Address Space

Virtual Address Format

0x0000

0x4800
0x4000

Physical
Address Space

SegID = 0

14.41Crooks & Zaharia CS162 © UCB Spring 2025

Example: Four Segments (16 bit addresses)
Seg ID # Base Limit

0 (code) 0x4000 0x0800
1 (data) 0x4800 0x1400
2 (shared) 0xF000 0x1000
3 (stack) 0x0000 0x3000

OffsetSeg
014 1315

0x4000

0x0000

0x8000

0xC000

Virtual
Address Space

Virtual Address Format

0x0000

0x4800
0x5C00

0x4000

Physical
Address Space

SegID = 0

SegID = 1

14.42Crooks & Zaharia CS162 © UCB Spring 2025

Example: Four Segments (16 bit addresses)
Seg ID # Base Limit

0 (code) 0x4000 0x0800
1 (data) 0x4800 0x1400
2 (shared) 0xF000 0x1000
3 (stack) 0x0000 0x3000

OffsetSeg
014 1315

0x4000

0x0000

0x8000

0xC000

Virtual
Address Space

Virtual Address Format

0x0000

0x4800
0x5C00

0x4000

Physical
Address Space

SegID = 0

SegID = 1

14.43Crooks & Zaharia CS162 © UCB Spring 2025

Seg ID # Base Limit
0 (code) 0x4000 0x0800
1 (data) 0x4800 0x1400
2 (shared) 0xF000 0x1000
3 (stack) 0x0000 0x3000

OffsetSeg
014 1315

Segment 1

0x8020

01 00 0000 0000 0000

10 00 0000 0010 0000

0x4000

Offset 0x20Segment 2

Offset 0x0 0x4000

0xF020

Example: Four Segments (16 bit addresses)

14.44Crooks & Zaharia CS162 © UCB Spring 2025

Adding support for sharing

Seg ID # Base Limit Protection
Bits

0 (code) 0x4000 0x0800 Read-
Execute

1 (data) 0x4800 0x1400 Read-Write
2 (shared) 0xF000 0x1000 Read-Write
3 (stack) 0x0000 0x3000 Read-Write

Useful to share
certain memory segments between address spaces.

Hardware must now check whether access is
1) within bounds 2) permissible

14.45Crooks & Zaharia CS162 © UCB Spring 2025

Segmentation Summary Pros

Minimal hardware requirements & efficient translation

Segmentation can better support sparse address spaces

Avoids internal fragmentation.
Minimises memory waste between logical segments of the address space

14.46Crooks & Zaharia CS162 © UCB Spring 2025

Limitations of Segmentation

1) No expandable memory
Static memory allocation

2) No memory Sharing
Cannot share memory between

processes

3) Non-Relative Memory
Addresses

Location of code & data
determined at runtime

4) External Fragmentation
Cannot relocate/move programs.

Leads to fragmentation
5) Internal Fragmentation
Address Space must be

contiguous≈

≈≈

≈

14.47Crooks & Zaharia CS162 © UCB Spring 2025

Segmentation Summary Cons

External fragmentation still a problem
Must fit variable-sized chunks into physical memory.

May move processes multiple times to fit everything

	CS162�Operating Systems and�Systems Programming�Lecture 14���Virtual Memory
	Topic Breakdown
	Recall: A process
	Recall: Address Space
	Memory Virtualization Objectives
	Interposing on Process Behaviours
	An Address
	Bits & Addresses
	Increasingly powerful mechanisms
	Uniprogramming: I’m all alone
	Memory Translation Through Relocation
	Memory Translation Through Relocation
	Memory Translation Through Relocation
	Recall: A Bug’s Tail
	Recall: Super Mario Land 2
	Increasingly powerful mechanisms
	Recall: Memory Protection
	Base And Bound
	Base & Bound
	Base & Bound
	Limitations of Base & Bound
	Fragmentation in More Detail
	Fragmentation in More Detail
	Limitations of Base & Bound
	Increasingly powerful mechanisms
	Base & Bound With Hardware Relocation
	Address Translation
	Base And Bound With Relocation
	Memory Management Unit
	Limitations of Base & Bound with Relocation
	Increasingly powerful mechanisms
	Segmentation
	Segmentation
	Implementation of a multi-segment model
	Address Translation
	Address Translation
	Address Translation
	Example: Four Segments (16 bit addresses)
	Example: Four Segments (16 bit addresses)
	Example: Four Segments (16 bit addresses)
	Example: Four Segments (16 bit addresses)
	Example: Four Segments (16 bit addresses)
	Adding support for sharing
	Segmentation Summary Pros
	Limitations of Segmentation
	Segmentation Summary Cons

