
CS162
Operating Systems and
Systems Programming

Lecture 13

Fair Scheduling Continued & Deadlock

Professor Natacha Crooks & Matei Zaharia

https://cs162.org/

Slides based on prior slide decks from David Culler, Ion Stoica, John Kubiatowicz, Alison Norman and Lorenzo Alvisi

13.2Crooks & Zaharia CS162 © UCB Spring 2025

Goals for Today

• Proportional fair sharing and Linux EEVDF

• A deeper look at deadlock

13.3Crooks & Zaharia CS162 © UCB Spring 2025

Recall: Proportional Fair Sharing

Share the CPU proportionally to per-job “weights”

Give each job a share of the CPU according to its priority

Low-priority jobs get to run less often

But all jobs can make progress (no starvation)

Originated in networking

Fair sharing aims to maintain a global property (fairness)
instead of reasoning about queues and priorities!

13.4Crooks & Zaharia CS162 © UCB Spring 2025

Fair Sharing Variants

• n users want to share a resource (e.g. CPU)

– Solution: give each 1/n of the shared resource

• Generalized by max-min fairness

– Handles case where a user needs less than its fair share

– E.g. user 1 needs no more than 20%

• Generalized by weighted/proportional max-min fairness

– Give weights to users based on their importance

– E.g. first user has weight 1, second user has weight 2

CPU
100%

50%

0%

33%

33%

33%

100%

50%

0%

20%

40%

40%

100%

50%

0%

33%

66%

13.5Crooks & Zaharia CS162 © UCB Spring 2025

Early Example: Lottery Scheduling

Give each job some number of lottery tickets (≥1)

On each time slice, randomly pick a winning ticket

On average, each job’s CPU time is proportional to
the number of tickets it has

Running time? O(1)

13.7Crooks & Zaharia CS162 © UCB Spring 2025

Stride Scheduling

Deterministic proportional fair sharing

Stride of each job is
𝑏𝑖𝑔 𝑛𝑢𝑚𝑏𝑒𝑟 𝑊

𝑁𝑖

The larger your share of tickets Ni, the smaller your stride

Maintain a “pass” counter for each job, and advance by stride each time it runs

– But gets tricky when jobs sleep or join or leave

13.8Crooks & Zaharia CS162 © UCB Spring 2025

Fluid Flow Model

Suppose that our processor/resource supported infinitely fine-grained context switching,
e.g. after every instruction (for a CPU) or every bit sent (for a network link)

– Known as a “fluid flow system” or Generalized Processor Sharing (GPS)

Fair sharing could then be done via weighted bit-by-bit round-robin

– During each round when a client has work, do a number of work units equal to its
weight (e.g. run that many CPU instructions, or send that many bits on the network)

13.9Crooks & Zaharia CS162 © UCB Spring 2025

GPS Example

0 152 104 6 8

Red client has weight 5, and has 5

“packets” of work at time 0

– Other clients have weight 1 and

always have work backlogged

Each packet has size 1 (for now)

Link capacity is 1 packet/second
5 1 1 11 1

clients

resource

13.10Crooks & Zaharia CS162 © UCB Spring 2025

Emulate GPS

Select packet that finishes first in GPS assuming that there are no future arrivals

– Known as “Weighted Fair Queuing”, WFQ

Packet Approximation of GPS

13.11Crooks & Zaharia CS162 © UCB Spring 2025

Approximating GPS

Fluid GPS system service order

0 2 104 6 8

Approximation: select the first packet finishes in GPS

– Known as “Weighted Fair Queueing”, WFQ

13.12Crooks & Zaharia CS162 © UCB Spring 2025

Implementation Challenges

Need to compute the finish time of a packet in the fluid flow system…

 … but the finish time may change as new packets arrive!

Need to update the finish times of all packets that are in service in the fluid flow
system when a new packet arrives

– Very expensive; we might have 1000s of clients (threads, flows, etc)!

13.14Crooks & Zaharia CS162 © UCB Spring 2025

Solution: Virtual Time

Instead of computing packet finish times, track the number of rounds needed to
send the remaining bits of the packet in GPS (virtual finish time)

– Virtual finish time doesn’t change when other packets arrive; it is always equal
to (length of packet) / wi, where i is the client’s weight, since each round of
weighted bit-by-bit round-robin sends wi work from client i

System virtual time – index of current round in weighted bit-by-bit round-robin

13.15Crooks & Zaharia CS162 © UCB Spring 2025

System Virtual Time: Example

V(t) increases inversely proportionally to the sum of the weights of the backlogged flows

Flow 2 (w2 = 1)

Flow 1 (w1 = 1)

time

time

1 2
3
1

4
2

5
3

C

C/2V(t)

Packet arrival

13.16Crooks & Zaharia CS162 © UCB Spring 2025

Implementing WFQ with Virtual Finish Times

Each time a client gets a new packet of work (e.g., on the CPU, whenever a
process becomes runnable), compute the virtual finish time of that packet

– Assume the duration is a full time quantum for CPU scheduling
(can have other heuristics to identify IO-bound tasks)

Maintain a red-black tree of runnable processes, sorted by virtual finish time

Always schedule the process with the earliest virtual finish time

13.17Crooks & Zaharia CS162 © UCB Spring 2025

The finish time of each packet in WFQ will be at most q + its finish time in GPS
(where q is the maximum time quantum)

Every packet experiences at most q extra delay compared to GPS

Nice Property of WFQ

13.18Crooks & Zaharia CS162 © UCB Spring 2025

What Problem Does EEVDF Try to Solve?

Minimize lag: the difference between service received in real system vs fluid
flow (idealized) system

Fluid system service order

0 2 104 6 8

Weighted Fair Queueing

0 2 104 6 8

Fluid system: 2.5

Real system: 5

Lag: 2.5 (worst case O(n) where n
is the number of clients)

13.19Crooks & Zaharia CS162 © UCB Spring 2025

Why is This Bad?

Minimize lag: the difference between service received in real system vs fluid
flow (idealized) system

Fluid system service order

0 2 104 6 8

Weighted Fair Queueing

0 2 104 6 8

Red client has 1/2 of resource capacity but can be denied service for n slots!
Bad for predictability, jitter, and network congestion algorithms

13.20Crooks & Zaharia CS162 © UCB Spring 2025

How?

Schedule only the processes/packets that are eligible in fluid flow system,
i.e., packets with virtual arrival time <= current virtual time

Fluid system service order

0 2 104 6 8

EEVDF

0 2 104 6 8

Only first of the red packets is eligible and has earliest deadline among all eligible packets so schedule it

13.21Crooks & Zaharia CS162 © UCB Spring 2025

How?

Schedule only the processes/packets that are eligible in fluid flow system,
i.e., packets with virtual arrival time <= current virtual time

Fluid system service order

0 2 104 6 8

EEVDF

0 2 104 6 8

No red packet is eligible (so pick another packet, e.g., black packet)

13.22Crooks & Zaharia CS162 © UCB Spring 2025

How?

Schedule only the processes/packets that are eligible in fluid flow system,
i.e., packets with virtual arrival time <= current virtual time

Fluid system service order

0 2 104 6 8

EEVDF

0 2 104 6 8

Second red packet is eligible and has earliest deadline, so schedule it

13.23Crooks & Zaharia CS162 © UCB Spring 2025

How?

Schedule only the processes/packets that are eligible in fluid flow system,
i.e., packets with virtual arrival time <= current virtual time

Fluid system service order

0 2 104 6 8

EEVDF

0 2 104 6 8

Lag <= 1 (independent on number of clients)

13.24Crooks & Zaharia CS162 © UCB Spring 2025

Comparison of Proportional Sharing Algorithms

n: number of clients

q: length of max time quantum

Scheduler
complexity

Finish time delay vs
fluid flow system

Lag vs fluid flow
system

Lottery
scheduling

O(1) O(sqrt(n))*q
average case

O(sqrt(n))*q
average case

Stride
scheduling

O(log(n)) O(log(n))*q O(log(n))*q

WFQ O(log(n)) q O(n)*q

EEVDF O(log(n)) q O(1)*q

13.25Crooks & Zaharia CS162 © UCB Spring 2025

Configuring “Packet Lengths” in CPU Scheduling

Remember that EEVDF considers packet lengths, aims to finish shorter packets faster!

In Linux EEVDF, tasks can specify their preferred time slice via sched_setattr(), so that
developers can ask for interactive tasks to be scheduled faster

Fluid system

0 2 4 6

EEVDF

0 2 4 6

client 1: weight 3, slice 1s

client 2: weight 1, slice 1s

client 3: weight 1, slice 1s

client 4: weight 1, slice 0.25s

Example:

13.26Crooks & Zaharia CS162 © UCB Spring 2025

Configuring “Packet Lengths” in CPU Scheduling

Can clients cheat and get more total CPU time by requesting a smaller time slice?

a) Yes b) No

13.27Crooks & Zaharia CS162 © UCB Spring 2025

Implementing EEVDF in the Kernel (Rough Sketch)

For each task, track it lag in virtual time, i.e. service it received minus service it
should have received under GPS

– Positive means we owe it time, negative means it ran ahead of GPS

Only tasks with lag ≥ 0 are eligible; for each of those, compute a virtual deadline
based on eligible_vtime + vtime_slice, and store them in a sorted red-black tree

Schedule the task with the lowest deadline from the red-black tree

As tasks that had lag < 0 become eligible, compute their deadlines and add to tree

More details: https://lwn.net/Articles/925371/, https://hackmd.io/@Kuanch/eevdf

https://lwn.net/Articles/925371/
https://hackmd.io/@Kuanch/eevdf

13.28Crooks & Zaharia CS162 © UCB Spring 2025

What to Do When Tasks Sleep?

If a task goes to sleep (e.g. on I/O), we probably want to remember its lag and
return it with that lag when it wakes up

– What would be the problem if we reset lag to 0?

But if too many tasks wake up at once, this might result in arbitrarily delaying
existing tasks in the system, which is not great

In practice, Linux decays the lag after some time (heuristics still being explored)

13.29Crooks & Zaharia CS162 © UCB Spring 2025

How do “nice” Values Map to Weights in Linux?

Each priority level is 1.25x the weight of the next lower one

i.e. weight = 1024 / 1.25nice

13.30Crooks & Zaharia CS162 © UCB Spring 2025

Summary: Schedulers in Linux

O(n) scheduler
Linux 2.4 to Linux 2.6

O(1) scheduler
Linux 2.6 to 2.6.22

CFS scheduler
Linux 2.6.23 to 6.6

EEVDF scheduler
Linux 6.6 onward

Did not scale with large number of
processes

MLFQ, but got very complex

Proportional Fair Sharing, but can have
suboptimal lag for interactive tasks

Proportional Fair Sharing with low lag,
fewer heuristics than CFS

13.31Crooks & Zaharia CS162 © UCB Spring 2025

Understanding Deadlock

I will if you will I will if you will

13.32Crooks & Zaharia CS162 © UCB Spring 2025

Deadlock: A Deadly type of Starvation

Deadlock: cyclic waiting for resources

Thread A owns Res 1 and is waiting for Res 2

Thread B owns Res 2 and is waiting for Res 1

Res 2Res 1

Thread
B

Thread
A

Wait
For

Wait
For

Owned
By

Owned
By

13.33Crooks & Zaharia CS162 © UCB Spring 2025

Deadlock: A Deadly type of Starvation

Starvation: thread waits indefinitely

Deadlock implies starvation
but starvation does not imply deadlock

Starvation can end (but doesn’t have to)
Deadlock can’t end without external intervention

13.34Crooks & Zaharia CS162 © UCB Spring 2025

Example: Single-Lane Bridge Crossing

13.35Crooks & Zaharia CS162 © UCB Spring 2025

Bridge Crossing Example

Rules:

– Car must own the segment under them

– Must acquire segment that they are moving into

– For bridge: traffic only in one direction at a time

Each segment of road can be viewed as a resource

13.36Crooks & Zaharia CS162 © UCB Spring 2025

Bridge Crossing Example

Car must own the segment under them

Must acquire segment that they are moving into

For bridge: traffic only in one direction at a time

13.37Crooks & Zaharia CS162 © UCB Spring 2025

Bridge Crossing Example

H
o
n
k
!

East
Half

West
Half

Wait
For

Wait
For

Owned
By

Owned
ByDeadlock:

Circular waiting for
resources

13.38Crooks & Zaharia CS162 © UCB Spring 2025

Bridge Crossing Example

East
Half

West
Half

Wait
For

Wait
For

Owned
By

Owned
ByDeadlock:

Circular waiting for
resources

Could be resolved by “external” intervention:

- fork-lifting a car off the bridge (equivalent to killing a thread)

- Asking cars to back up
(equivalent to removing the resource from the thread)

13.39Crooks & Zaharia CS162 © UCB Spring 2025

Starvation does not mean deadlock!

Stop sign: purple car must wait for cars to
release resources.

Cars on highway never do!
Purple car is starved

13.40Crooks & Zaharia CS162 © UCB Spring 2025

Thread A:

x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:

y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Lock yLock x

Thread
B

Thread
A

Wait
For

Wait
For

Owned
By

Owned
By

Deadlock with Locks

This lock pattern exhibits non-deterministic deadlock

A system is subject to deadlock if deadlock can happen in any execution

Will threads deadlock
a) Always b) Never c) Sometimes d) I’m still trying to cross the road

13.41Crooks & Zaharia CS162 © UCB Spring 2025

Deadlock with Locks: “Lucky” Case

Thread A:

x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:

y.Acquire();

x.Acquire();
…
x.Release();
y.Release();

Sometimes, schedule won’t trigger deadlock!

13.42Crooks & Zaharia CS162 © UCB Spring 2025

Other Types of Deadlock

Threads can block waiting for resources

– Locks

– Terminals

– Printers

– Memory

Threads can block waiting for other threads

– Pipes

– Sockets

– pthread_join

You can deadlock on any of these!

13.43Crooks & Zaharia CS162 © UCB Spring 2025

Dining Computer Scientists Problem

Five chopsticks/Five computer scientists

Need two chopsticks to eat

13.44Crooks & Zaharia CS162 © UCB Spring 2025

Free for all leads to deadlock

13.45Crooks & Zaharia CS162 © UCB Spring 2025

Intervention needed

Fixing deadlock needs external intervention!

How could we have prevented this?

 - Give everyone two chopsticks

 - Make everyone “give up” after a while

 - Require everyone to pick up both chopsticks
atomically

13.46Crooks & Zaharia CS162 © UCB Spring 2025

Four requirements for occurrence of deadlock

1) Mutual exclusion and bounded resources

Only one thread at a time can use a resource.

2) Hold and wait

Thread holding at least one resource is waiting to acquire additional
resources held by other threads

13.47Crooks & Zaharia CS162 © UCB Spring 2025

Four requirements for occurrence of deadlock

3) No preemption

Resources are released only voluntarily by the thread holding the resource,
after thread is finished with it

4) Circular wait

There exists a set {T1, …, Tn} of waiting threads

» T1 is waiting for a resource that is held by T2

» T2 is waiting for a resource that is held by T3

…

» Tn is waiting for a resource that is held by T1

13.48Crooks & Zaharia CS162 © UCB Spring 2025

Detecting Deadlock: Resource-Allocation Graph

System Model

A set of Threads T1, T2, . . ., Tn

Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

Each resource type Ri has Wi instances

Each thread

Request() / Use() / Release() a resource:

13.49Crooks & Zaharia CS162 © UCB Spring 2025

Detecting Deadlock: Resource-Allocation Graph

Resource-Allocation Graph

– Vertices of two types:

T = {T1, T2, …, Tn},

the set threads in the system.

R = {R1, R2, …, Rm},

the set of resource types in system

– request edge – directed edge T1 → Rj

– assignment edge – directed edge Rj → Ti

Symbols

R1

R2

T1 T2

13.50Crooks & Zaharia CS162 © UCB Spring 2025

Resource-Allocation Graph Examples

T1 T2 T3

R1 R2

R3

R4

Simple Resource
Allocation Graph

T1 T2 T3

R1 R2

R3

R4

Allocation Graph
with Deadlock

T1

T2

T3

R2

R1

T4

Allocation Graph with
Cycle, No Deadlock

13.51Crooks & Zaharia CS162 © UCB Spring 2025

Deadlock Detection Algorithm

Let [X] represent an m-ary vector of non-negative integers (quantities of
resources of each type)

 [FreeResources]: Current free resources each type

[RequestT]: Current requests from thread T

 [AllocT]: Current resources held by thread T

13.52Crooks & Zaharia CS162 © UCB Spring 2025

Deadlock Detection Algorithm

See if tasks can eventually terminate on their own

 [Avail] = [FreeResources]
 add all threads to UNFINISHED
 do {

 done = true
 foreach thread in UNFINISHED {
 if ([Requestthread] <= [Avail]) {
 remove thread from UNFINISHED
 [Avail] = [Avail] + [Allocthread]
 done = false
 }
 }
 } until(done)

 Threads left in UNFINISHED  deadlocked

13.53Crooks & Zaharia CS162 © UCB Spring 2025

T1

T2

T3

R2

R1

T4

Deadlock Detection Algorithm
[Avail] = [FreeResources]
 add all threads to UNFINISHED
 do {

 done = true
 foreach thread in UNFINISHED {
 if ([Requestthread] <= [Avail]) {
 remove thread from UNFINISHED
 [Avail] = [Avail] + [Allocthread]
 done = false
 }
 }
 } until(done)

Threads left in UNFINISHED  deadlocked

[Avail] = {0,0}

UNFINISHED = T1, T2, T3, T4

Looking at T1: [1,0] > [0,0]

Looking at T2: [0,0] <= [0,0]

Avail = [1,0]

UNFINISHED = T1,T3,T4

Looking at T3: [0,1] > [1,0]

Looking at T4

[0,0] <= [0,0]

Avail = [1,1]

UNFINISHED = T1, T3

Looking at T1: [1,0] <= [1,1]

Avail = [2,1]

UNFINISHED = T3

Looking at T3: [0,1] <= [2,1]

Avail = [2,2]

UNFINISHED = Empty!

13.54Crooks & Zaharia CS162 © UCB Spring 2025

How should a system deal with deadlock?

Deadlock prevention
Write your code in a way that it isn’t prone to deadlock

Deadlock recovery
Let deadlock happen, and figure out how to recover from it

Deadlock avoidance
Dynamically delay resource requests so deadlock doesn’t happen

Deadlock denial
 Ignore the possibility of deadlock

13.55Crooks & Zaharia CS162 © UCB Spring 2025

Deadlock prevention

Condition 1: Mutual exclusion and bounded resources

=> Provide sufficient resources

Condition 2: Hold and wait

=> Abort requests or acquire all resources atomically

Condition 3: No preemption

=> Preempt threads

Condition 4: Circular wait

=> Order resources and always acquire resources in the same way

13.56Crooks & Zaharia CS162 © UCB Spring 2025

Condition 1 Fix: (Virtually) Infinite Resources

With virtual memory we have “infinite” space so everything will always succeed

Thread A

AllocateOrWait(1 MB)

AllocateOrWait(1 MB)

Free(1 MB)

Free(1 MB)

Thread B

AllocateOrWait(1 MB)

AllocateOrWait(1 MB)

Free(1 MB)

Free(1 MB)

13.57Crooks & Zaharia CS162 © UCB Spring 2025

Condition 2 Fix: Request Resources Atomically

Thread A:

x.Acquire();

y.Acquire();

…

y.Release();

x.Release();

Thread B:

y.Acquire();

x.Acquire();

…

x.Release();

y.Release();

Consider instead:

Thread A:

Acquire_both(x, y);

…

y.Release();

x.Release();

Thread B:

Acquire_both(y, x);

…

x.Release();

y.Release();

Rather than:

13.58Crooks & Zaharia CS162 © UCB Spring 2025

Condition 3 Fix: Preemption

Force thread to give up resource

Common technique in databases using transaction aborts

– A transaction from a user can be “aborted” by the DB while running: all
of its actions are undone, and user must retry the transaction

Common technique in wireless networks:

– Everyone speaks at once. When a resource collision is detected, retry at
a new, random time

13.59Crooks & Zaharia CS162 © UCB Spring 2025

Condition 4 Fix: Circular Waiting

Force all threads to request resources

in the same order

Thread A:

x.Acquire();

y.Acquire();

…

y.Release();

x.Release();

Thread B:

y.Acquire();

x.Acquire();

…

x.Release();

y.Release();

Thread A:

x.Acquire();

y.Acquire();

…

y.Release();

x.Release();

Thread B:

x.Acquire();

y.Acquire();

…

y.Release();

x.Release();

13.60Crooks & Zaharia CS162 © UCB Spring 2025

Condition 4 Fix: Circular Waiting

1

2

3
4

5

Matei: first 1 then 5

Crooks: first 2 then 1

Turing: first 3 then 2

Nelson: first 4 than 3

Liskov: first 5 then 4

If we instead ensure that Matei
always grabs chopstick 5 before 1,
(higher ID first), no deadlock!

13.61Crooks & Zaharia CS162 © UCB Spring 2025

How should a system deal with deadlock?

Deadlock prevention
Write your code in a way that it isn’t prone to deadlock

Deadlock recovery

Let deadlock happen, and figure out how to recover from it

Deadlock avoidance

Dynamically delay resource requests so deadlock doesn’t happen

13.62Crooks & Zaharia CS162 © UCB Spring 2025

Techniques for Deadlock Avoidance

Attempt 1

When a thread requests a resource, OS checks if it would result in deadlock

If not, it grants the resource right away

If so, it waits for other threads to release resources

13.63Crooks & Zaharia CS162 © UCB Spring 2025

Thread A:

x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:

y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Techniques for Deadlock Avoidance

Wait?

But it’s already
too late…

Blocks…

This does not work!

13.64Crooks & Zaharia CS162 © UCB Spring 2025

Deadlock Avoidance: Three States

Safe state

System can delay resource acquisition to prevent deadlock

Unsafe state

No deadlock yet…

But threads can request resources in a pattern that unavoidably leads to deadlock

Deadlocked state

There exists a deadlock in the system

Deadlock avoidance: prevent system from reaching an unsafe state

13.65Crooks & Zaharia CS162 © UCB Spring 2025

Deadlock Avoidance: Three States

A acquires x.

Thread A:

x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:

y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

There exists a deadlock-free sequence: A-A(y), A-R(y), A-R(x), B-A(y),
B-A(x), B-R(x), B-R(y) => safe state

B acquires y.
All sequences will lead to deadlock => unsafe state

13.66Crooks & Zaharia CS162 © UCB Spring 2025

Banker’s Algorithm for Avoiding Deadlock

Banker’s algorithm ensures we never enter an unsafe state

Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

Technique: pretend each request is granted,
then run our deadlock detection algorithm

13.67Crooks & Zaharia CS162 © UCB Spring 2025

Banker’s Algorithm for Avoiding Deadlock

[Avail] = [FreeResources]
 add all threads to UNFINISHED
 do {

 done = true
 Foreach thread in UNFINISHED {
 if ([Requestthread] <= [Avail]) {
 remove thread from UNFINISHED
 [Avail] = [Avail] + [Allocthread]
 done = false
 }
 }
 } until(done)

[Avail] = [FreeResources]
 add all threads to UNFINISHED
 do {

 done = true
 Foreach threads in UNFINISHED {
 if ([Maxthread]-[Allocthread] <= [Avail]) {
 remove thread from UNFINISHED
 [Avail] = [Avail] + [Allocthread]
 done = false
 }
 }
 } until(done)

13.68Crooks & Zaharia CS162 © UCB Spring 2025

Banker’s Algorithm for Avoiding Deadlock

[Avail] = [FreeResources]
 add all threads to UNFINISHED
 do {

 done = true
 Foreach threads in UNFINISHED {
 if ([Maxthread]-[Allocthread] <= [Avail]) {
 remove thread from UNFINISHED
 [Avail] = [Avail] + [Allocthread]
 done = false
 }
 }
 } until(done)

Step 1: “Assume” request is made

Step 2: If request is made, is system still in SAFE state?

 There exists a sequence {T1, T2, … Tn} such that all transactions finish

Step 3: If SAFE, grant resources. If UNSAFE, delay

13.69Crooks & Zaharia CS162 © UCB Spring 2025

Banker’s Algorithm for Avoiding Deadlock

[Avail] = [FreeResources]
 add all threads to UNFINISHED
 do {
 done = true
 Foreach threads in UNFINISHED {
 if ([Maxthread]-[Allocthread] <= [Avail]) {
 remove thread from UNFINISHED
 [Avail] = [Avail] + [Allocthread]
 done = false
 }
 }
 } until(done)

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

When Thread A acquires x:

Avail = [0,1]
For A: [1,1] – [1,0] <= [0,1]
Update Avail to = 1,1. Remove A from
UNFINISHED
For B:
[1,1] – [0,0] <= [1,1]
Update Avail to = [1,1]. Remove B from
UNFINISHED

Safe state!

When Thread B acquires y:

Avail = [0,0]
For A: [1,1] – [1,0] <= [0,0]
For B: [1,1] – [0,1] <= [0,0]

UNFINISHED not empty

Unsafe state! Must delay acquiring y!

13.70Crooks & Zaharia CS162 © UCB Spring 2025

Summary

Deadlock implies starvation, but starvation does not imply deadlock

Four conditions for deadlocks:
Mutual exclusion

Hold and wait
No preemption

Circular wait

Techniques for addressing deadlock: prevention, recovery, avoidance

Banker’s algorithm for avoiding deadlock

	Default Section
	Slide 1: CS162 Operating Systems and Systems Programming Lecture 13 Fair Scheduling Continued & Deadlock
	Slide 2: Goals for Today
	Slide 3: Recall: Proportional Fair Sharing
	Slide 4: Fair Sharing Variants
	Slide 5: Early Example: Lottery Scheduling
	Slide 7: Stride Scheduling
	Slide 8: Fluid Flow Model
	Slide 9: GPS Example
	Slide 10: Packet Approximation of GPS
	Slide 11: Approximating GPS
	Slide 12: Implementation Challenges
	Slide 14: Solution: Virtual Time
	Slide 15: System Virtual Time: Example
	Slide 16: Implementing WFQ with Virtual Finish Times
	Slide 17: Nice Property of WFQ
	Slide 18: What Problem Does EEVDF Try to Solve?
	Slide 19: Why is This Bad?
	Slide 20: How?
	Slide 21: How?
	Slide 22: How?
	Slide 23: How?
	Slide 24: Comparison of Proportional Sharing Algorithms
	Slide 25: Configuring “Packet Lengths” in CPU Scheduling
	Slide 26: Configuring “Packet Lengths” in CPU Scheduling
	Slide 27: Implementing EEVDF in the Kernel (Rough Sketch)
	Slide 28: What to Do When Tasks Sleep?
	Slide 29: How do “nice” Values Map to Weights in Linux?
	Slide 30: Summary: Schedulers in Linux
	Slide 31: Understanding Deadlock
	Slide 32: Deadlock: A Deadly type of Starvation
	Slide 33: Deadlock: A Deadly type of Starvation
	Slide 34: Example: Single-Lane Bridge Crossing
	Slide 35: Bridge Crossing Example
	Slide 36: Bridge Crossing Example
	Slide 37: Bridge Crossing Example
	Slide 38: Bridge Crossing Example
	Slide 39: Starvation does not mean deadlock!
	Slide 40: Deadlock with Locks
	Slide 41: Deadlock with Locks: “Lucky” Case
	Slide 42: Other Types of Deadlock
	Slide 43: Dining Computer Scientists Problem
	Slide 44: Free for all leads to deadlock
	Slide 45: Intervention needed
	Slide 46: Four requirements for occurrence of deadlock
	Slide 47: Four requirements for occurrence of deadlock
	Slide 48: Detecting Deadlock: Resource-Allocation Graph
	Slide 49: Detecting Deadlock: Resource-Allocation Graph
	Slide 50: Resource-Allocation Graph Examples
	Slide 51: Deadlock Detection Algorithm
	Slide 52: Deadlock Detection Algorithm
	Slide 53: Deadlock Detection Algorithm
	Slide 54: How should a system deal with deadlock?
	Slide 55: Deadlock prevention
	Slide 56: Condition 1 Fix: (Virtually) Infinite Resources
	Slide 57: Condition 2 Fix: Request Resources Atomically
	Slide 58: Condition 3 Fix: Preemption
	Slide 59: Condition 4 Fix: Circular Waiting
	Slide 60
	Slide 61: How should a system deal with deadlock?
	Slide 62: Techniques for Deadlock Avoidance
	Slide 63: Techniques for Deadlock Avoidance
	Slide 64: Deadlock Avoidance: Three States
	Slide 65: Deadlock Avoidance: Three States
	Slide 66: Banker’s Algorithm for Avoiding Deadlock
	Slide 67: Banker’s Algorithm for Avoiding Deadlock
	Slide 68: Banker’s Algorithm for Avoiding Deadlock
	Slide 69: Banker’s Algorithm for Avoiding Deadlock
	Slide 70: Summary

