
CS162
Operating Systems and
Systems Programming

Lecture 13

Fair Scheduling Continued & Deadlock

Professor Natacha Crooks & Matei Zaharia

https://cs162.org/

Slides based on prior slide decks from David Culler, Ion Stoica, John Kubiatowicz, Alison Norman and Lorenzo Alvisi



13.2Crooks & Zaharia CS162 © UCB Spring 2025

Goals for Today

• Proportional fair sharing and Linux EEVDF

• A deeper look at deadlock
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Recall: Proportional Fair Sharing

Share the CPU proportionally to per-job “weights”

Give each job a share of the CPU according to its priority

Low-priority jobs get to run less often

But all jobs can make progress (no starvation)

Originated in networking

Fair sharing aims to maintain a global property (fairness) 
instead of reasoning about queues and priorities!



13.4Crooks & Zaharia CS162 © UCB Spring 2025

Fair Sharing Variants

• n users want to share a resource (e.g. CPU)

– Solution: give each 1/n of the shared resource

• Generalized by max-min fairness

– Handles case where a user needs less than its fair share

– E.g. user 1 needs no more than 20%

• Generalized by weighted/proportional max-min fairness

– Give weights to users based on their importance

– E.g. first user has weight 1, second user has weight 2

CPU
100%

50%

0%

33%

33%

33%

100%

50%

0%

20%

40%

40%

100%

50%

0%

33%

66%



13.5Crooks & Zaharia CS162 © UCB Spring 2025

Early Example: Lottery Scheduling

Give each job some number of lottery tickets (≥1)

On each time slice, randomly pick a winning ticket

On average, each job’s CPU time is proportional to 
the number of tickets it has

Running time? O(1)
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Stride Scheduling

Deterministic proportional fair sharing

Stride of each job is 
𝑏𝑖𝑔 𝑛𝑢𝑚𝑏𝑒𝑟 𝑊

𝑁𝑖 

The larger your share of tickets Ni, the smaller your stride

Maintain a “pass” counter for each job, and advance by stride each time it runs

– But gets tricky when jobs sleep or join or leave
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Fluid Flow Model

Suppose that our processor/resource supported infinitely fine-grained context switching, 
e.g. after every instruction (for a CPU) or every bit sent (for a network link)

– Known as a “fluid flow system” or Generalized Processor Sharing (GPS) 

Fair sharing could then be done via weighted bit-by-bit round-robin

– During each round when a client has work, do a number of work units equal to its 
weight (e.g. run that many CPU instructions, or send that many bits on the network)
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GPS Example

0 152 104 6 8

Red client has weight 5, and has 5 

“packets” of work at time 0

– Other clients have weight 1 and 

always have work backlogged

Each packet has size 1 (for now)

Link capacity is 1 packet/second
5 1 1 11 1

clients

resource
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Emulate GPS

Select packet that finishes first in GPS assuming that there are no future arrivals

– Known as “Weighted Fair Queuing”, WFQ

Packet Approximation of GPS
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Approximating GPS

Fluid GPS system service order

0 2 104 6 8

Approximation: select the first packet finishes in GPS

– Known as “Weighted Fair Queueing”, WFQ
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Implementation Challenges

Need to compute the finish time of a packet in the fluid flow system…

 … but the finish time may change as new packets arrive!

Need to update the finish times of all packets that are in service in the fluid flow 
system when a new packet arrives

– Very expensive; we might have 1000s of clients (threads, flows, etc)!
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Solution: Virtual Time

Instead of computing packet finish times, track the number of rounds needed to 
send the remaining bits of the packet in GPS (virtual finish time)

– Virtual finish time doesn’t change when other packets arrive; it is always equal 
to (length of packet) / wi, where i is the client’s weight, since each round of 
weighted bit-by-bit round-robin sends wi work from client i

System virtual time – index of current round in weighted bit-by-bit round-robin
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System Virtual Time: Example

V(t) increases inversely proportionally to the sum of the weights of the backlogged flows

Flow 2 (w2 = 1)

Flow 1 (w1 = 1)

time

time

1 2
3
1

4
2

5
3

C

C/2V(t)

Packet arrival
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Implementing WFQ with Virtual Finish Times

Each time a client gets a new packet of work (e.g., on the CPU, whenever a 
process becomes runnable), compute the virtual finish time of that packet

– Assume the duration is a full time quantum for CPU scheduling
(can have other heuristics to identify IO-bound tasks)

Maintain a red-black tree of runnable processes, sorted by virtual finish time

Always schedule the process with the earliest virtual finish time
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The finish time of each packet in WFQ will be at most q + its finish time in GPS 
(where q is the maximum time quantum)

Every packet experiences at most q extra delay compared to GPS

Nice Property of WFQ
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What Problem Does EEVDF Try to Solve?

Minimize lag: the difference between service received in real system vs fluid 
flow (idealized) system

Fluid system service order

0 2 104 6 8

Weighted Fair Queueing

0 2 104 6 8

Fluid system: 2.5 

Real system: 5 

Lag: 2.5 (worst case O(n) where n
is the number of clients)
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Why is This Bad?

Minimize lag: the difference between service received in real system vs fluid 
flow (idealized) system

Fluid system service order

0 2 104 6 8

Weighted Fair Queueing

0 2 104 6 8

Red client has 1/2 of resource capacity but can be denied service for n slots!
Bad for predictability, jitter, and network congestion algorithms
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How?

Schedule only the processes/packets that are eligible in fluid flow system, 
i.e., packets with virtual arrival time <= current virtual time  

Fluid system service order

0 2 104 6 8

EEVDF

0 2 104 6 8

Only first of the red packets is eligible and has earliest deadline among all eligible packets so schedule it
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How?

Schedule only the processes/packets that are eligible in fluid flow system, 
i.e., packets with virtual arrival time <= current virtual time 

Fluid system service order

0 2 104 6 8

EEVDF

0 2 104 6 8

No red packet is eligible (so pick another packet, e.g., black packet)
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How?

Schedule only the processes/packets that are eligible in fluid flow system, 
i.e., packets with virtual arrival time <= current virtual time 

Fluid system service order

0 2 104 6 8

EEVDF

0 2 104 6 8

Second red packet is eligible and has earliest deadline, so schedule it
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How?

Schedule only the processes/packets that are eligible in fluid flow system, 
i.e., packets with virtual arrival time <= current virtual time 

Fluid system service order

0 2 104 6 8

EEVDF

0 2 104 6 8

Lag <= 1 (independent on number of clients)



13.24Crooks & Zaharia CS162 © UCB Spring 2025

Comparison of Proportional Sharing Algorithms

n: number of clients

q: length of max time quantum

Scheduler 
complexity

Finish time delay vs 
fluid flow system

Lag vs fluid flow 
system

Lottery 
scheduling

O(1) O(sqrt(n))*q
average case 

O(sqrt(n))*q
average case 

Stride 
scheduling

O(log(n)) O(log(n))*q O(log(n))*q

WFQ O(log(n)) q O(n)*q

EEVDF O(log(n)) q O(1)*q
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Configuring “Packet Lengths” in CPU Scheduling

Remember that EEVDF considers packet lengths, aims to finish shorter packets faster!

In Linux EEVDF, tasks can specify their preferred time slice via sched_setattr(), so that 
developers can ask for interactive tasks to be scheduled faster

Fluid system

0 2 4 6

EEVDF

0 2 4 6

client 1: weight 3, slice 1s

client 2: weight 1, slice 1s

client 3: weight 1, slice 1s

client 4: weight 1, slice 0.25s

Example:
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Configuring “Packet Lengths” in CPU Scheduling

Can clients cheat and get more total CPU time by requesting a smaller time slice?

a) Yes    b) No
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Implementing EEVDF in the Kernel (Rough Sketch)

For each task, track it lag in virtual time, i.e. service it received minus service it 
should have received under GPS

– Positive means we owe it time, negative means it ran ahead of GPS

Only tasks with lag ≥ 0 are eligible; for each of those, compute a virtual deadline 
based on eligible_vtime + vtime_slice, and store them in a sorted red-black tree

Schedule the task with the lowest deadline from the red-black tree

As tasks that had lag < 0 become eligible, compute their deadlines and add to tree

More details: https://lwn.net/Articles/925371/, https://hackmd.io/@Kuanch/eevdf 

https://lwn.net/Articles/925371/
https://hackmd.io/@Kuanch/eevdf
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What to Do When Tasks Sleep?

If a task goes to sleep (e.g. on I/O), we probably want to remember its lag and 
return it with that lag when it wakes up

– What would be the problem if we reset lag to 0?

But if too many tasks wake up at once, this might result in arbitrarily delaying 
existing tasks in the system, which is not great

In practice, Linux decays the lag after some time (heuristics still being explored)
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How do “nice” Values Map to Weights in Linux?

Each priority level is 1.25x the weight of the next lower one

i.e. weight = 1024 / 1.25nice
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Summary: Schedulers in Linux

O(n) scheduler
Linux 2.4 to Linux 2.6

O(1) scheduler
Linux 2.6 to 2.6.22

CFS scheduler
Linux 2.6.23 to 6.6

EEVDF scheduler
Linux 6.6 onward

Did not scale with large number of 
processes

MLFQ, but got very complex

Proportional Fair Sharing, but can have 
suboptimal lag for interactive tasks

Proportional Fair Sharing with low lag, 
fewer heuristics than CFS
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Understanding Deadlock

I will if you will I will if you will
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Deadlock: A Deadly type of Starvation

Deadlock: cyclic waiting for resources

Thread A owns Res 1 and is waiting for Res 2

Thread B owns Res 2 and is waiting for Res 1

Res 2Res 1

Thread
B

Thread
A

Wait
For

Wait
For

Owned
By

Owned
By
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Deadlock: A Deadly type of Starvation

Starvation: thread waits indefinitely

Deadlock implies starvation 
but starvation does not imply deadlock

Starvation can end (but doesn’t have to)
Deadlock can’t end without external intervention
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Example: Single-Lane Bridge Crossing
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Bridge Crossing Example

Rules:

– Car must own the segment under them

– Must acquire segment that they are moving into

– For bridge: traffic only in one direction at a time 

Each segment of road can be viewed as a resource
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Bridge Crossing Example

Car must own the segment under them

Must acquire segment that they are moving into

For bridge: traffic only in one direction at a time 
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Bridge Crossing Example

H
o
n
k
!

East
Half

West
Half

Wait
For

Wait
For

Owned
By

Owned
ByDeadlock:

Circular waiting for 
resources
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Bridge Crossing Example

East
Half

West
Half

Wait
For

Wait
For

Owned
By

Owned
ByDeadlock:

Circular waiting for 
resources

Could be resolved by “external” intervention:

- fork-lifting a car off the bridge (equivalent to killing a thread)

- Asking cars to back up 
(equivalent to removing the resource from the thread)
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Starvation does not mean deadlock!

Stop sign: purple car must wait for cars to 
release resources.

Cars on highway never do!
Purple car is starved
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Thread A:

x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:

y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Lock yLock x

Thread
B

Thread
A

Wait
For

Wait
For

Owned
By

Owned
By

Deadlock with Locks

This lock pattern exhibits non-deterministic deadlock

A system is subject to deadlock if deadlock can happen in any execution

Will threads deadlock
a) Always  b) Never c) Sometimes d) I’m still trying to cross the road
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Deadlock with Locks: “Lucky” Case

Thread A:

x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:

y.Acquire();

x.Acquire();
…
x.Release();
y.Release();

Sometimes, schedule won’t trigger deadlock!
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Other Types of Deadlock

Threads can block waiting for resources

– Locks

– Terminals

– Printers

– Memory

Threads can block waiting for other threads

– Pipes

– Sockets

– pthread_join

You can deadlock on any of these!
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Dining Computer Scientists Problem

Five chopsticks/Five computer scientists

Need two chopsticks to eat
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Free for all leads to deadlock
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Intervention needed

Fixing deadlock needs external intervention!

How could we have prevented this?

 - Give everyone two chopsticks

 - Make everyone “give up” after a while

 - Require everyone to pick up both chopsticks 
atomically
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Four requirements for occurrence of deadlock

1) Mutual exclusion and bounded resources

Only one thread at a time can use a resource.

2) Hold and wait

Thread holding at least one resource is waiting to acquire additional 
resources held by other threads



13.47Crooks & Zaharia CS162 © UCB Spring 2025

Four requirements for occurrence of deadlock

3) No preemption

Resources are released only voluntarily by the thread holding the resource, 
after thread is finished with it

4) Circular wait

There exists a set {T1, …, Tn} of waiting threads

» T1 is waiting for a resource that is held by T2

» T2 is waiting for a resource that is held by T3

…

» Tn is waiting for a resource that is held by T1
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Detecting Deadlock:  Resource-Allocation Graph

System Model 

A set of Threads T1, T2, . . ., Tn

Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

Each resource type Ri has Wi instances

Each thread 

Request() / Use() / Release() a resource:
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Detecting Deadlock:  Resource-Allocation Graph

Resource-Allocation Graph

– Vertices of two types:

T = {T1, T2, …, Tn}, 

the set threads in the system.

R = {R1, R2, …, Rm}, 

the set of resource types in system

– request edge – directed edge T1 → Rj

– assignment edge – directed edge Rj → Ti

Symbols

R1

R2

T1 T2



13.50Crooks & Zaharia CS162 © UCB Spring 2025

Resource-Allocation Graph Examples

T1 T2 T3

R1 R2

R3

R4

Simple Resource
Allocation Graph

T1 T2 T3

R1 R2

R3

R4

Allocation Graph
with Deadlock

T1

T2

T3

R2

R1

T4

Allocation Graph with 
Cycle, No Deadlock
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Deadlock Detection Algorithm

Let [X] represent an m-ary vector of non-negative integers (quantities of 
resources of each type)

 [FreeResources]: Current free resources each type

[RequestT]: Current requests from thread T

 [AllocT]: Current resources held by thread T
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Deadlock Detection Algorithm

See if tasks can eventually terminate on their own

  [Avail] = [FreeResources] 
 add all threads to UNFINISHED 
 do {

   done = true
  foreach thread in UNFINISHED { 
   if ([Requestthread] <= [Avail]) {
    remove thread from UNFINISHED
    [Avail] = [Avail] + [Allocthread]
    done = false
   }
  }
 } until(done) 

 Threads left in UNFINISHED  deadlocked
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T1

T2

T3

R2

R1

T4

Deadlock Detection Algorithm
[Avail] = [FreeResources] 
 add all threads to UNFINISHED 
 do {

   done = true
  foreach thread in UNFINISHED { 
   if ([Requestthread] <= [Avail]) {
    remove thread from UNFINISHED
    [Avail] = [Avail] + [Allocthread]
    done = false
   }
  }
 } until(done)  
  

Threads left in UNFINISHED  deadlocked

[Avail] = {0,0}

UNFINISHED = T1, T2, T3, T4

Looking at T1: [1,0] > [0,0]

Looking at T2: [0,0] <= [0,0]

Avail = [1,0]

UNFINISHED = T1,T3,T4

Looking at T3: [0,1] > [1,0]

Looking at T4

[0,0] <= [0,0]

Avail = [1,1]

UNFINISHED = T1, T3 

Looking at T1: [1,0] <= [1,1]

Avail = [2,1]

UNFINISHED = T3

Looking at T3: [0,1] <= [2,1]

Avail = [2,2]

UNFINISHED = Empty!
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How should a system deal with deadlock?

Deadlock prevention
Write your code in a way that it isn’t prone to deadlock

Deadlock recovery
Let deadlock happen, and figure out how to recover from it

Deadlock avoidance
Dynamically delay resource requests so deadlock doesn’t happen

Deadlock denial
 Ignore the possibility of deadlock
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Deadlock prevention

Condition 1: Mutual exclusion and bounded resources

=> Provide sufficient resources

Condition 2: Hold and wait

=> Abort requests or acquire all resources atomically

Condition 3: No preemption

=> Preempt threads

Condition 4: Circular wait

=> Order resources and always acquire resources in the same way
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Condition 1 Fix: (Virtually) Infinite Resources

With virtual memory we have “infinite” space so everything will always succeed

Thread A

AllocateOrWait(1 MB)

AllocateOrWait(1 MB)

Free(1 MB)

Free(1 MB)

Thread B

AllocateOrWait(1 MB)

AllocateOrWait(1 MB)

Free(1 MB)

Free(1 MB)
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Condition 2 Fix: Request Resources Atomically

Thread A:

x.Acquire();

y.Acquire();

…

y.Release();

x.Release();

Thread B:

y.Acquire();

x.Acquire();

…

x.Release();

y.Release();

Consider instead:

Thread A:

Acquire_both(x, y);

…

y.Release();

x.Release();

Thread B:

Acquire_both(y, x);

…

x.Release();

y.Release();

Rather than:
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Condition 3 Fix: Preemption

Force thread to give up resource

Common technique in databases using transaction aborts

– A transaction from a user can be “aborted” by the DB while running: all 
of its actions are undone, and user must retry the transaction

Common technique in wireless networks:

–  Everyone speaks at once. When a resource collision is detected, retry at 
a new, random time
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Condition 4 Fix: Circular Waiting

Force all threads to request resources 

in the same order

Thread A:

x.Acquire();

y.Acquire();

…

y.Release();

x.Release();

Thread B:

y.Acquire();

x.Acquire();

…

x.Release();

y.Release();

Thread A:

x.Acquire();

y.Acquire();

…

y.Release();

x.Release();

Thread B:

x.Acquire();

y.Acquire();

…

y.Release();

x.Release();
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Condition 4 Fix: Circular Waiting

1

2

3
4

5

Matei: first 1 then 5

Crooks: first 2 then 1

Turing: first 3 then 2

Nelson: first 4 than 3

Liskov: first 5 then 4

If we instead ensure that Matei 
always grabs chopstick 5 before 1, 
(higher ID first), no deadlock!
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How should a system deal with deadlock?

Deadlock prevention
Write your code in a way that it isn’t prone to deadlock

Deadlock recovery

Let deadlock happen, and figure out how to recover from it

Deadlock avoidance

Dynamically delay resource requests so deadlock doesn’t happen
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Techniques for Deadlock Avoidance

Attempt 1

When a thread requests a resource, OS checks if it would result in deadlock

If not, it grants the resource right away

If so, it waits for other threads to release resources
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Thread A:

x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:

y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Techniques for Deadlock Avoidance

Wait?

But it’s already 
too late…

Blocks…

This does not work!
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Deadlock Avoidance: Three States

Safe state

System can delay resource acquisition to prevent deadlock

Unsafe state

No deadlock yet…

But threads can request resources in a pattern that unavoidably leads to deadlock

Deadlocked state

There exists a deadlock in the system

Deadlock avoidance: prevent system from reaching an unsafe state
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Deadlock Avoidance: Three States

A acquires x. 

Thread A:

x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:

y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

There exists a deadlock-free sequence: A-A(y), A-R(y), A-R(x), B-A(y), 
B-A(x), B-R(x), B-R(y) => safe state

B acquires y. 
All sequences will lead to deadlock => unsafe state
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Banker’s Algorithm for Avoiding Deadlock

Banker’s algorithm ensures we never enter an unsafe state 

Evaluate each request and grant if some 
ordering of threads is still deadlock free afterward 

Technique: pretend each request is granted,
then run our deadlock detection algorithm



13.67Crooks & Zaharia CS162 © UCB Spring 2025

Banker’s Algorithm for Avoiding Deadlock

[Avail] = [FreeResources] 
 add all threads to UNFINISHED 
 do {

  done = true
  Foreach thread in UNFINISHED { 
   if ([Requestthread] <= [Avail]) {
    remove thread from UNFINISHED
    [Avail] = [Avail] + [Allocthread]
    done = false
   }
  }
 } until(done)

[Avail] = [FreeResources] 
 add all threads to UNFINISHED 
 do {

  done = true
  Foreach threads in UNFINISHED { 
   if ([Maxthread]-[Allocthread] <= [Avail]) {
    remove thread from UNFINISHED
    [Avail] = [Avail] + [Allocthread]
    done = false
   }
  }
 } until(done)
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Banker’s Algorithm for Avoiding Deadlock

[Avail] = [FreeResources] 
 add all threads to UNFINISHED 
 do {

  done = true
  Foreach threads in UNFINISHED { 
   if ([Maxthread]-[Allocthread] <= [Avail]) {
    remove thread from UNFINISHED
    [Avail] = [Avail] + [Allocthread]
    done = false
   }
  }
 } until(done)

Step 1: “Assume” request is made

Step 2: If request is made, is system still in SAFE state? 

 There exists a sequence {T1, T2, … Tn} such that all transactions finish

Step 3: If SAFE, grant resources. If UNSAFE, delay
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Banker’s Algorithm for Avoiding Deadlock

[Avail] = [FreeResources] 
 add all threads to UNFINISHED 
 do {
  done = true
  Foreach threads in UNFINISHED { 
   if ([Maxthread]-[Allocthread] <= [Avail]) {
    remove thread from UNFINISHED
    [Avail] = [Avail] + [Allocthread]
    done = false
   }
  }
 } until(done)

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

When Thread A acquires x:

Avail = [0,1]
For A: [1,1] – [1,0] <= [0,1]
Update Avail to = 1,1. Remove A from 
UNFINISHED
For B:
[1,1] – [0,0] <= [1,1]
Update Avail to = [1,1]. Remove B from 
UNFINISHED

Safe state!

When Thread B acquires y:

Avail = [0,0]
For A: [1,1] – [1,0] <= [0,0]
For B: [1,1] – [0,1] <= [0,0]

UNFINISHED not empty

Unsafe state! Must delay acquiring y!
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Summary

Deadlock implies starvation, but starvation does not imply deadlock

Four conditions for deadlocks:
Mutual exclusion

Hold and wait
No preemption

Circular wait

Techniques for addressing deadlock: prevention, recovery, avoidance

Banker’s algorithm for avoiding deadlock
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