CS162

Operating Systems and
Systems Programming

Lecture 11

Scheduling 2:
Case Studies, Real Time, and Forward Progress

October 5t, 2020

Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: Internal OS File Description

* Internal Data Structure describing everything about the file
— Where it resides s
— Its status i
— How to access it

* Pointer: struct file *file

— Everything accessed with file
descriptor has one of these

e Struct file_operations *f _op: /
Describes how this particular device
implements its operations

— For disks: points to file operations
— For pipes: points to pipe operations
— For sockets: points to socket operations

10/5/20 Kubiatowicz CS162 © UCB Fall 2020

Lec 11.2

10/5/20

Recall: Life Cycle of An I/0O Request

/0 completed,
input data available, or
output completed

retum from system call
1}

transfer data
(i appropriate) to process,
retum completion
or error code

determine which 1O
completed, indicate state
change to I/0 subsystem

........... [........

recelve interrupt, store
data in device-driver buffer
ifinput, signal to unblock
device driver

/0 completed,

User request 10 process
Program 1
system call
Kernel I/10
Subsystem
send request to device
driver, block process it kemel
appropriate VO subsystem
. . t.

Device Driver e dovice
configure controller to driver
block until interrupted

Top Half
Device Driver P
Bottom Half
. device
Device M B
Hardware
‘ time

generate Interrupt

)

Kubiatowicz CS162 © UCB Fall 2020

Lec 11.3

Recall: Scheduling

time slice
expired

interrupt
oceurs

* Question: How is the OS to decide which of several tasks to
take off a queue?

» Scheduling: deciding which threads are given access to
resources from moment to moment

— Often, we think in terms of CPU time, but could also think
about access to resources like network BW or disk access

wait for an
interrupt

10/5/20 Kubiatowicz CS162 © UCB Fall 2020

Lec 11.4

10/5/20

Recall: Scheduling Policy Goals/Criteria
* Minimize Response Time
— Minimize elapsed time to do an operation (or job)
— Response time is what the user sees:
» Time to echo a keystroke in editor
» Time to compile a program
» Real-time Tasks: Must meet deadlines imposed by World
* Maximize Throughput
— Maximize operations (or jobs) per second
— Throughput related to response time, but not identical:

» Minimizing response time will lead to more context switching than if you only
maximized throughput

— Two parts to maximizing throughput
» Minimize overhead (for example, context-switching)
» Efficient use of resources (CPU, disk, memory, etc)
+ Fairness
— Share CPU among users in some equitable way
— Fairness is not minimizing average response time:
» Better average response time by making system less fair

Kubiatowicz CS162 © UCB Fall 2020 Lec 11.5

10/5/20

Recall: Example of RR with Time Quantum = 20

+ Example: Process Burst Time
P, 53
P, 8
P, 68
P, 24

— The Gantt chart is:

P, [Py |Ps [Py [Py [Py [Py [Py | P [Py
0 20 28 48 68 88 108

112 125 145 153
— Waiting time for P,=(68-20)+(112-88)=72
P,=(20-0)=20
P,=(28-0)+(88-48)+(125-108)=85
P,=(48-0)+(108-68)=88

— Average waiting time = (72+20+85+88)/4=66"4

— Average completion time = (125+28+153+112)/4 = 104/
* Thus, Round-Robin Pros and Cons:

— Better for short jobs, Fair (+)

— Context-switching time adds u) ef% IL(J)ngFjch?gOZS-)

Kubiatowicz C Lec 11.6
Recall: What if we Knew the Future? How to Handle Simultaneous Mix of Diff Types of Apps?
« Could we always mirror best FCFS? » Consider mix of interactive and high throughput apps:
— ?
- Shortest Job First (SJF): How to best sc.hedule them?
. — How to recognize one from the other?
—Run What_everjob has least amount of » Do you trust app to say that it is “interactive”?
computation to do .) 10 .
) .)) o — Should you schedule the set of apps identically on | ..,/ Weighted toward small bursts

— Sometimes called “Shortest Time to Completion First” (STCF) servers, workstations, pads, and cellphones? ol
» Shortest Remaining Time First (SRTF): » For instance, is Burst Time (observed) useful to ¢

— Preemptive version of SJF: if job arrives and has a shorter time to completion decide which application gets CPU time? £

than the remaining time on the current job, immediately preempt CPU — Short Bursts = Interactivity = High Priority? "

— Sometimes called “Shortest Remaining Time to Completion First” (SRTCF) * Assumptions encoded into many schedulers: af

. i — Apps that sleep a lot and have short bursts must 0 5w W% w
These c.an be applleq to whole program or current CPU burst be interactive apps ~ they should get high priority i s s

— Idea is to get short jobs out of the system — Apps that compute a lot should get low(er?) priority, since they won’t notice

— Big effect on short jobs, only small effect on long ones intermittent bursts from interactive apps

— Result is better average response time » Hard to characterize apps:

— What about apps that sleep for a long time, but then compute for a long time?
. — Or, what about apps that must run under all circumstances (say periodically)
10/5/20 Kubiatowicz CS162 © UCB Fall 2020

Lec 11.7

10/5/20

Kubiatowicz CS162 © UCB Fall 2020 Lec 11.8

Multi-Level Feedback Scheduling
h Long-Running Compute

_ T Tasks Demoted to
~ Low Priority
L.,%—‘

» Another method for exploiting past behavior (first use in CTSS)
— Multiple queues, each with different priority
» Higher priority queues often considered “foreground” tasks
— Each queue has its own scheduling algorithm
» e.g. foreground — RR, background — FCFS

» Sometimes multiple RR priorities with quantum increasing exponentially
(highest:1ms, next: 2ms, next: 4ms, etc)

» Adjust each job’s priority as follows (details vary)
— Job starts in highest priority queue
— If timeout expires, drop one level

— If timeout doesn’t expire, push up one level (or to top)
10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.9

Scheduling Details
h _Long-Running Compute

. T Tasks Demoted to
~ Low Priority
L.,%—‘

* Result approximates SRTF:
— CPU bound jobs drop like a rock
— Short-running I/O bound jobs stay near top
» Scheduling must be done between the queues
— Fixed priority scheduling:
» serve all from highest priority, then next priority, etc.
— Time slice:
» each queue gets a certain amount of CPU time
» €.g., 70% to highest, 20% next, 10% lowest

10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.10

Scheduling Details
i‘Long-Running Compute

Tasks Demoted to
~ Low Priority
L’%—

» Countermeasure: user action that can foil intent of the OS designers
— For multilevel feedback, put in a bunch of meaningless 1/O to keep job’s
priority high
— Of course, if everyone did this, wouldn’t work!
« Example of Othello program:

— Playing against competitor, so key was to do computing at higher priority the
competitors.

» Put in printf’s, ran much faster!

10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.11

Case Study: Linux O(1) Scheduler

| User Tasks |

| Kernel/Realtime Tasks

(o] 100 139
Priority-based scheduler: 140 priorities
— 40 for “user tasks” (set by “nice”), 100 for “Realtime/Kernel”
— Lower priority value = higher priority (for nice values)
— Highest priority value = Lower priority (for realtime values)
— All algorithms O(1)
» Timeslices/priorities/interactivity credits all computed when job finishes time slice
» 140-bit bit mask indicates presence or absence of job at given priority level
Two separate priority queues: “active” and “expired”

— All tasks in the active queue use up their timeslices and get placed on the expired
queue, after which queues swapped

Timeslice depends on priority — linearly mapped onto timeslice range
— Like a multi-level queue (one queue per priority) with different timeslice at each level
— Execution split into “Timeslice Granularity” chunks — round robin through priority

10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.12

Linux O(1) Scheduler

CPU-X Expired
runqueue

CPU-X Active
runqueue

E—> Priority 1 W
E—» Priority 2 \
> Real-time task priorities

B |
E—» Priority 100 |
wt
B—» Priority 101 ‘
E- —

* Lots of ad-hoc
heuristics
—Try to boost priority
of I/0O-bound tasks

—Try to boost priority
of starved tasks

Priority 101

Task priority FIFO lists

Priority 140

PREETRY

10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.13

10/5/20

O(1) Scheduler Continued

» Heuristics
— User-task priority adjusted +5 based on heuristics
» p->sleep_avg = sleep_time — run_time
» Higher sleep_avg = more 1/0 bound the task, more reward (and vice versa)
— Interactive Credit
» Earned when a task sleeps for a “long” time
» Spend when a task runs for a “long” time

» LC |i|s used to provide hysteresis to avoid changing interactivity for temporary changes in
ehavior

— However, “interactive tasks” get special dispensation
» To try to maintain interactivity
» Placed back into active queue, unless some other task has been starved for too long...
* Real-Time Tasks
— Always preempt non-RT tasks
— No dynamic adjustment of priorities
— Scheduling schemes:
» SCHED_FIFO: preempts other tasks, no timeslice limit

» SCHED_RR: preempts normal tasks, RR scheduling amongst tasks of same priority

Kubiatowicz CS162 © UCB Fall 2020 Lec 11.14

Administrivia

* Midterm 1: Still grading
— Seemed like a reasonable level of difficulty, but still need to get finish grading
— Some people had issues with their Zoom recordings
» We will look extra carefully at folks missing recordings, but may give a pass this time
» Next time: We will be much harsher on folks who don’t respond properly when queried!
* Yes, we are allowed to Zoom proctor midterms as well as finals
— The CS half of the department was given permission to proctor select courses
— CS162 is authorized to proctor their midterms!
— We expect everyone to have worked out challenges by Midterm 2:
» Camera on, Microphone on, no headphones!

10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.15

10/5/20

Administrivia (Con’t)
Group evaluations coming up for Project 1
— Every person gets 20 pts/partner which they hand out as they wish
— No points to yourself!
— Projects are a zero-sum game: you must participate in your group!

» Some of you seem to have fallen off the earth and aren’t responding to email
» This is a good way to get no points for your part in projects

Make sure that your TA understands any issues that you might be having with
your group

—I'm happy to meet with groups that just want a bit of “fine-tuning”
Group Coffee Hours

— Look for opportunities to get extra points for a screen-shot with you and your team
(with cameras turned on)!

Don’t forget to turn on camera for discussion sections!

Kubiatowicz CS162 © UCB Fall 2020 Lec 11.16

So, Does the OS Schedule Processes or Threads?

* Many textbooks use the “old model”—one thread per process
+ Usually it's really: threads (e.g., in Linux)

* One point to notice: switching threads vs. switching processes incurs
different costs:

— Switch threads: Save/restore registers

— Switch processes: Change active address space too!
» Expensive
» Disrupts caching

* Recall, However: Simultaneous Multithreading (or “Hyperthreading”)

— Different threads interleaved on a cycle-by-cycle basis and can be in different
processes (have different address spaces)

Multi-Core Scheduling

+ Algorithmically, not a huge difference from single-core scheduling

» Implementation-wise, helpful to have per-core scheduling data structures
— Cache coherence

* Affinity scheduling: once a thread is scheduled on a CPU, OS tries to
reschedule it on the same CPU

— Cache reuse

10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.17 10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.18
Recall: Spinlocks for multiprocessing Gang Scheduling and Parallel Applications
» Spinlock implementation:
int value = @; // Free * When multiple threads work together on a multi-core system, try to
Acquire() {
while (test&set(&value)) {}; // spin while busy schedule them together
— Makes spin-waiting more efficient (inefficient to spin-wait for a thread that’s
Release() { ded
value = 0; // atomic store suspende)
» Spinlock doesn’t put the calling thread to sleep—it just busy waits . . .
P osn P! 9 = y + Alternative: OS informs a parallel program how many processors its
— When might this be preferable? thread heduled Scheduler Activati
» Waiting for limited number of threads at a barrier in a multiprocessing (multicore) program reads aré scheduled on (cheduler Actva IOHS)
» Wait time at barrier would be greatly increased if threads must be woken inside kernel — Application adapts to number of cores that it has scheduled
* Every *Icest&fset() is a write, which makes value ping-pong around between core-local caches — “Space sharing” with other parallel programs can be more efficient, because
(using lots of memory!) parallel speedup is often sublinear with the number of cores
— So —really want to use test&test&set() !
» As we discussed in Lecture 7, the extra read eliminates the ping-ponging issues:
// Implementation of test&test&set():
Acquire() {
do
while(value); // wait until might be free
} while (test&set(&value)), // exit if acquire lock
10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.19 10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.20

Real-Time Scheduling
* Goal: Predictability of Performance!
— We need to predict with confidence worst case response times for systems!
—In RTS, performance guarantees are:
» Task- and/or class centric and often ensured a priori
— In conventional systems, performance is:
» System/throughput oriented with post-processing (... wait and see ...)
— Real-time is about enforcing predictability, and does not equal fast computing!!!
» Hard real-time: for time-critical safety-oriented systems
— Meet all deadlines (if at all possible)
— Ideally: determine in advance if this is possible

— Earliest Deadline First (EDF), Least Laxity First (LLF),
Rate-Monitonic Scheduling (RMS), Deadline Monotonic Scheduling (DM)

+ Soft real-time: for multimedia
— Attempt to meet deadlines with high probability
— Constant Bandwidth Server (CBS)

10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.21

Example: Workload Characteristics

» Tasks are preemptable, independent with arbitrary arrival (=release) times
+ Tasks have deadlines (D) and known computation times (C)
» Example Setup:

Tl F—|C b l .
e -
T4) I

10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.22

Example: Round-Robin Scheduling Doesn’t Work

T [miam

S N B | :
T4T_|__ l

Time >

10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.23

Earliest Deadline First (EDF)

» Tasks periodic with period P and computation C in each period: (P;, C;) for
each task i

* Preemptive priority-based dynamic scheduling:

— Each task is assigned a (current) priority based on how close the absolute
deadline is (i.e. Df** = D} + P;for each task!)

— The scheduler always schedules the active task with the closest absolute deadline

L= . — 1 o . —t t = 1 =
=62 L— : 1 - : 1 - : -—»
1,-021 —— 1 — - ;

0 5

10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.24

EDF Feasibility Testing

« Even EDF won’t work if you have too many tasks

» For n tasks with computation time C and deadline D, a feasible schedule
exists if:

10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.25

10/5/20

Ensuring Progress

Starvation: thread fails to make progress for an indefinite period of time

Starvation (this lecture) # Deadlock (next lecture) because starvation
could resolve under right circumstances

— Deadlocks are unresolvable, cyclic requests for resources

Causes of starvation:
— Scheduling policy never runs a particular thread on the CPU
— Threads wait for each other or are spinning in a way that will never be resolved

Let’s explore what sorts of problems we might encounter and how to avoid
them...

Kubiatowicz CS162 © UCB Fall 2020 Lec 11.26

Strawman: Non-Work-Conserving Scheduler

* A work-conserving scheduler is one that does not leave the CPU idle when
there is work to do

» A non-work-conserving scheduler could trivially lead to starvation

+ In this class, we'll assume that the scheduler is work-conserving (unless
stated otherwise)

10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.27

10/5/20

Strawman: Last-Come, First-Served (LCFS)

« Stack (LIFO) as a scheduling data structure
— Late arrivals get fast service
— Early ones wait — extremely unfair
— In the worst case — starvation
* When would this occur?
— When arrival rate (offered load) exceeds service rate (delivered load)
— Queue builds up faster than it drains
* Queue can build in FIFO too, but “serviced in the order received”...

Kubiatowicz CS162 © UCB Fall 2020 Lec 11.28

Is FCFS Prone to Starvation?

Scheduled Task (process, thread)

g -- _-------

2 .
s

C == O S S e - time
o | | e EEEE N O . . 1 7 1 | |

c . I N N 1] | |

= arrivals N B e ee

=] - e e

© |

@

e

3]

n

« If a task never yields (e.g., goes into an infinite loop), then
other tasks don’t get to run

* Problem with all non-preemptive schedulers...
* And early personal OSes such as original MacOS, Windows 3.1, etc

Is Round Robin (RR) Prone to Starvation?

« Each of N processes gets ~1/N of CPU (in window)

— With quantum length Q ms, process waits at most
(N-1)*Q ms to run again
— So a process can’t be kept waiting indefinitely

* So RR is fair in terms of waiting time
— Not necessarily in terms of throughput...

10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.29 10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.30
Is Priority Scheduling Prone to Starvation? Priority Inversion
« Recall: Priority Scheduler always runs the [Priority 3 =—»{Job 1 }=»{Job 2 |>[Job 3 |
thread with highest priority Priority 2 —»{ Job 4
— Low priority thread might never run! Priority 1 -
— Starvation... Priority 0 >{Job5 }»{Job6 F{Job 7 | Py & Job3
Priority 2 Job 2
« But there are more serious problems as well... Priority 1 Job 1 ettt > a
— Priority inversion: even high priority threads might become starved Acquire()
+ At this point, which job does the scheduler choose?
* Job 3 (Highest priority)
Kubiatowicz CS162 © UCB Fall 2020 Lec 11.32

10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.31

10/5/20

Priority Inversion

Priority 3 RN Acquire()
Priority 2 Job2 | .
Priority 1 Job 1 R >

« Job 3 attempts to acquire lock held by Job 1

Priority Inversion

Nkl Blocked on Acquire

Priority 3

Priority 2

Priority 1

Job 2
Job 1 kbt »>

« At this point, which job does the scheduler choose?
* Job 2 (Medium Priority)

* Priority Inversion

10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.33 10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.34
Priority Inversion One Solution: Priority Donation/Inheritance
* Where high priority task is blocked waiting on low priority task
* Low priority one must run for high priority to make progress .
+ Medium priority task can starve a high priority one ey — _fiqunre()
Priority 2 Job2 | R
« When else might priority lead to starvation or “live lock”? Priority 1 Job 1 i > a
High Priority Low Priority + Job 3 temporarily grants Job 1 its “high priority” to run on its behalf
c while (try lock) { lock.acquire(..)
) "iock.release(...)
10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.35 10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.36

One Solution: Priority Donation/Inheritance

i3 Blocked on Acquire

Priority 3 S~ Release()
Priority 2 Job 2 \\““
~a

Priority 1

» Job 3 temporarily grants Job 1 its “high priority” to run on its behalf

10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.37

10/5/20

One Solution: Priority Donation/Inheritance

Priority 3 I Acquire()
Priority 2 Job 2 T,
Priority 1 Job 1

» Job 1 completes critical section and releases lock
« Job 3 acquires lock, runs again
* How does the scheduler know?

Project 2:

Scheduling

Kubiatowicz CS162 © UCB Fall 2020 Lec 11.38

Case Study: Martian Pathfinder Rover

July 4, 1997 — Pathfinder lands on Mars
— First US Mars landing since Vikings in 1976; first rover

— Novel delivery mechanism: inside air-filled balloons
bounced to stop on the surface from orbit!

* And then...a few days into mission...:
— Multiple system resets occur to realtime OS (VxWorks)
— System would reboot randomly, losing valuable time and progress

* Problem? Priority Inversion! Priority 2 |~ Data Distribution Task: needs lock |

— Low priority task grabs mutex trying to | Priority 1 = Lots of random medium stuff
communicate with high priority task: Priority O == ASI/MET collector: grab lock

— Realtime watchdog detected lack of forward progress and invoked reset to safe state
» High-priority data distribution task was supposed to complete with regular deadline
» Solution: Turn priority donation back on and upload fixes!
« Original developers turned off priority donation (also called priority inheritance)

— Worried about performance costs of donating priority!
Kubiatowicz CS162 © UCB Fall 2020

10/5/20 Lec 11.39

10/5/20

Are SRTF and MLFQ Prone to Starvation?

|
quantum = 8
LH—L\Long-Running Compute

Tasks Demoted to
Low Priority

" ~

quantum = 16 ﬁ#
\—’{ FCFS]

* In SRTF, long jobs are starved in favor of short ones
— Same fundamental problem as priority scheduling
* MLFQ is an approximation of SRTF, so it suffers from the same problem

Kubiatowicz CS162 © UCB Fall 2020 Lec 11.40

Cause for Starvation: Priorities?

* The policies we’ve studied so far:
— Always prefer to give the CPU to a prioritized job
— Non-prioritized jobs may never get to run

+ But priorities were a means, not an end
* Our end goal was to serve a mix of CPU-bound, I/O bound, and Interactive
jobs effectively on common hardware

— Give the 1/0 bound ones enough CPU to issue their next file operation and
wait (on those slow discs)

— Give the interactive ones enough CPU to respond to an input and wait (on
those slow humans)

— Let the CPU bound ones grind away without too much disturbance

10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.41

Recall: Changing Landscape...

Computers
Per Person Number
crunching,
1:108 Data Storage,
Massive Inet
, Services,
Bell’'s Law: New ML, ...
computer class 1:103 Workstai
every 10 years Vorkstation Productivity,
Interactive

1:1 = .PC"apmp !Li
' 4 rpA @
E \ze" ‘ E@ :|» Streaming
{ from/to the
103:1 E *'Q

physical
years

world

The Internet
of Things!

10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.42

Changing Landscape of Scheduling

* Priority-based scheduling rooted in “time-sharing”
— Allocating precious, limited resources across a diverse workload
» CPU bound, vs interactive, vs /0 bound
+ 80’s brought about personal computers, workstations, and servers on
networks
— Different machines of different types for different purposes
— Shift to fairness and avoiding extremes (starvation)
+ 90’s emergence of the web, rise of internet-based services, the data-
center-is-the-computer
— Server consolidation, massive clustered services, huge flashcrowds
— It's about predictability, 95t percentile performance guarantees

10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.43

DOES PRIORITIZING SOME JOBS
NECESSARILY STARVE THOSE THAT
AREN’T PRIORITIZED?

10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.44

Key Idea: Proportional-Share Scheduling

* The policies we’ve studied so far:
— Always prefer to give the CPU to a prioritized job
— Non-prioritized jobs may never get to run

* Instead, we can share the CPU proportionally
— Give each job a share of the CPU according to its priority
— Low-priority jobs get to run less often
— But all jobs can at least make progress (no starvation)

Recall: Lottery Scheduling

i,

@R T T T T T T T T T 1. tme

Ll

* Given a set of jobs (the mix), provide each with a share of a resource
—e.g., 50% of the CPU for Job A, 30% for , and 20% for Job C

« |dea: Give out tickets according to the proportion each should receive,

+ Every quantum (tick): draw one at random, schedule that job (thread) to run

10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.45 10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.46
Lottery Scheduling: Simple Mechanism Unfairness
—10 o Nyor = 2N, 10 + E.g., Given two jobs A and B of same run time
1 « Pick a numberdin1 .. N, asthe 08 (# Qs) that are each supposed to receive 50%,
e random “dart” 206 U = finish time of first / finish time of last
o | + Jobs record their N; of allocated tickets § + As a function of run time
- = « Order them by N; 2 ::
[+ Select the first j such that Y N, up toj ’
= exceeds d. 007 R
Figure 9.2: Lottery Fairness Study
L

10/5/20 Kubiatowicz CS162 © UCB Fall 2020

Lec 11.47

10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.48

Stride Scheduling

» Achieve proportional share scheduling without resorting to randomness,
and overcome the “law of small numbers” problem.

big#Ww
N
— The larger your share of tickets, the smaller your stride
— Ex: W = 10,000, A=100 tickets, B=50, C=250
— A stride: 100, B: 200, C: 40
» Each job as a “pass” counter
Scheduler: pick job with lowest pass, runs it, add its stride to its pass
Low-stride jobs (lots of tickets) run more often
— Job with twice the tickets gets to run twice as often
+ Some messiness of counter wrap-around, new jobs, ...

+ “Stride” of each job is

10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.49

Linux Completely Fair Scheduler (CFS)

Model: “Perfectly”
subdivided CPU:

» Goal: Each process gets an equal share of CPU
— N threads “simultaneously” execute on % of CPU

— The model is somewhat like simultaneous
multithreading — each thread gets % of the cycles

swil Ndd

* In general, can’t do this with real hardware
— OS needs to give out full CPU in time slices

— Thus, we must use something to keep the threads
roughly in sync with one another

10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.50

Linux Completely Fair Scheduler (CFS)

» Basic Idea: track CPU time per thread and schedule
threads to match up average rate of execution
Scheduling Decision:

—“Repair” illusion of complete fairness

— Choose thread with minimum CPU time

— Closely related to Fair Queueing
* Use a heap-like scheduling queue for this...

—O(log N) to add/remove threads, where N is
number of threads

Sleeping threads don’t advance their CPU time, so
they get a boost when they wake up again...

— Get interactivity automatically!

CFS: Average rate of
execution = %;

swil Ndd

Lec 11.51

10/5/20 Kubiatowicz CS162 © UCB Fall 2020

Linux CFS: Responsiveness/Starvation Freedom

In addition to fairness, we want low response time and starvation freedom
— Make sure that everyone gets to run at least a bit!
Constraint 1: Target Latency
— Period of time over which every process gets service
— Quanta = Target_Latency / n
» Target Latency: 20 ms, 4 Processes
— Each process gets 5ms time slice
» Target Latency: 20 ms, 200 Processes

— Each process gets 0.1ms time slice (!!!)
— Recall Round-Robin: large context switching overhead if slice gets to small

10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.52

Linux CFS: Throughput Aside: Priority in Unix — Being Nice

The industrial operating systems of the 60s and 70’s provided priority to
enforced desired usage policies.

— When it was being developed at Berkeley, instead it provided ways to “be nice”.
nice values range from -20 to 19

— Negative values are “not nice”

— If you wanted to let your friends get more time, you would nice up your job
Scheduler puts higher nice-value tasks (lower priority) to sleep more ...

—In O(1) scheduler, this translated fairly directly to priority (and time slice)
How does this idea translate to CFS?

— Change the rate of CPU cycles given to threads to change relative priority

* Goal: Throughput
— Avoid excessive overhead

* Constraint 2: Minimum Granularity
— Minimum length of any time slice

+ Target Latency 20 ms, Minimum Granularity 1 ms, 200 processes
— Each process gets 1 ms time slice

10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.53 10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.54
Linux CFS: Proportional Shares Example: Linux CFS: Proportional Shares
* What if we want to give more CPU to some and less to others in CFS . Target Latency = 20ms

(proportional share) ?

— Allow different threads to have different rates of execution (cycles/time) * Minimum Granularity = 1ms

« Use weights! Key Idea: Assign a weight w;to each process / to compute the + Example: Two CPU-Bound Threads
switching quanta ¢, — Thread A has weight 1
— Basic equal share: Q; = Target Latency - % — Thread B has weight 4

* Time slice for A? 4 ms

— Weighted Share: Q; = (" - Target Latency
' (/% W”) + Time slice for B? 16 ms

Reuse nice value to reflect share, rather than priority,
— Remember that lower nice value = higher priority
— CFS uses nice values to scale weights exponentially: Weight=1024/(1.25)nice

» Two CPU tasks separated by nice value of 5 =
Task with lower nice value has 3 times the weight, since (1.25)5~ 3

* So, we use “Virtual Runtime” instead of CPU time

10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.55 10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.56

Linux CFS: Proportional Shares
16 (wz=4)

Physical Virtual
CPU Time CPU Time

4 (w,=1)

» Track a thread's virtual runtime rather than its true physical runtime
— Higher weight: Virtual runtime increases more slowly
— Lower weight: Virtual runtime increases more quickly
» Scheduler’s Decisions are based on Virtual CPU Time
» Use of Red-Black tree to hold all runnable processes as sorted on vruntime variable
— O(1) time to find next thread to run (top of heap!)
— O(log N) time to perform insertions/deletions
» Cash the item at far left (item with earliest vruntime)

— When ready to schedule, grab version with smallest vruntime (which will be item at the far left).
10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.57

Choosing the Right Scheduler

| Care About: Then Choose:

CPU Throughput FCFS
Avg. Response Time SRTF Approximation
I/O Throughput SRTF Approximation

Fairness (CPU Time) Linux CFS
Fairness — Wait Time to Round Robin
Get CPU
Meeting Deadlines EDF
Favoring Important Tasks Priority
10/5/20 Kubiatowicz C$162 © UCB Fall 2020 Lec 11.58

A Final Word On Scheduling

* When do the details of the scheduling policy and fairness really matter?
— When there aren’t enough resources to go around

* When should you simply buy a faster computer?
— (Or network link, or expanded highway, or ...)
— One approach: Buy it when it will pay for itself in improved response time

» Perhaps you’re paying for worse response time in reduced
productivity, customer angst, etc...

» Might think that you should buy a faster X when X is utilized 100%,
but usually, response time goes to infinity as utilization=100%

+ An interesting implication of this curve:

— Most scheduling algorithms work fine in the “linear” portion of
the load curve, fail otherwise

— Argues for buying a faster X when hit “knee” of curve

Utilization

10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.59

Summary (1 of 2)

Scheduling Goals:
— Minimize Response Time (e.g. for human interaction)
— Maximize Throughput (e.g. for large computations)
— Fairness (e.g. Proper Sharing of Resources)
— Predictability (e.g. Hard/Soft Realtime)
Round-Robin Scheduling:

— Give each thread a small amount of CPU time when it executes; cycle between all
ready threads

— Pros: Better for short jobs
Shortest Job First (SJF)/Shortest Remaining Time First (SRTF):

— Run whatever job has the least amount of computation to do/least remaining amount
of computation to do

Multi-Level Feedback Scheduling:
— Multiple queues of different priorities and scheduling algorithms
— Automatic promotion/demotion of process priority in order to approximate SJF/SRTF

10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.60

Summary (2 of 2)

* Realtime Schedulers such as EDF

— Guaranteed behavior by meeting deadlines

— Realtime tasks defined by tuple of compute time and period

— Schedulability test: is it possible to meet deadlines with proposed set of processes?
* Lottery Scheduling:

— Give each thread a priority-dependent number of tokens (short tasks=more tokens)
 Linux CFS Scheduler: Fair fraction of CPU

— Approximates an “ideal” multitasking processor
— Practical example of “Fair Queueing”

10/5/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 11.61

