
CS162
Operating Systems and
Systems Programming

Lecture 1

What is an Operating System?

January 16th, 2024
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 1.21/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Goals for Today
• What is an Operating System?

– And – what is it not?
• What makes Operating Systems so exciting?
• Oh, and “How does this class operate?”

Interactive is important!
Ask Questions!

Slides courtesy of David Culler, Anthony D. Joseph, John Kubiatowicz, AJ
Shankar, George Necula, Alex Aiken, Eric Brewer, Ras Bodik, Ion Stoica,
Doug Tygar, and David Wagner.

Lec 1.31/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Greatest Artifact of Human Civilization…

Lec 1.41/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Greatest Artifact of Human Civilization…

Lec 1.51/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Running Systems at Internet Scale

1965 1975 1985 1995 2005 2015 2025

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

0%

10%

20%

30%

40%

50%

60%

70%

1965 1975 1985 1995 2005 2015 2025

Worldwide Internet Users

% Population Million

1969 1974 1990

R
FC

 6
75

 T
C

P/
IP

A
R

PA
N

et
Internet

H
TT

P
0.

9

WWW

Lec 1.61/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Across Incredible Diversity

years

Computers
Per Person

103:1

1:106

Laptop
PDA

Mainframe

Mini
Workstation

PC

Cell

1:1

1:103

Mote
!

Bell’s Law:
New
computer
class every
10 years

The Internet
of Things!

Number
crunching,
Data Storage,
Massive Inet
Services,
ML, …

Productivity,
Interactive

Streaming
from/to the
physical
world

Lec 1.71/16/2024 Kubiatowicz CS162 © UCB Spring 2024

And Range of Timescales

Jeff Dean:
“Numbers Everyone
Should Know”

Lec 1.81/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Operating Systems are at the Heart of it All!
• Make the incredible advance in the underlying technology available to a

rapidly evolving body of applications
– Provide consistent abstractions to applications, even on different hardware
– Manage sharing of resources among multiple applications

• The key building blocks:
– Processes
– Threads, Concurrency, Scheduling, Coordination
– Address Spaces
– Protection, Isolation, Sharing, Security
– Communication, Protocols
– Persistent storage, transactions, consistency, resilience
– Interfaces to all devices

Lec 1.91/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Example: What’s in a Search Query?

• Complex interaction of multiple components in multiple
administrative domains

– Systems, services, protocols, …

Datacenter

Load
balancer

Ad Server

DNS
Servers

Search
Index

DNS
request create

result
page

Page
store

Lec 1.101/16/2024 Kubiatowicz CS162 © UCB Spring 2024

But: What is an operating system?

Lec 1.111/16/2024 Kubiatowicz CS162 © UCB Spring 2024

What does an Operating System do?

• Most Likely:
– Memory Management
– I/O Management
– CPU Scheduling
– Communications? (Does Email belong in OS?)
– Multitasking/multiprogramming?

• What about?
– File System?
– Multimedia Support?
– User Interface?
– Internet Browser? 

• Is this only interesting to Academics??

Lec 1.121/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Definition of an Operating System
• No universally accepted definition
• “Everything a vendor ships when you order an operating system” is good

approximation
– But varies wildly

• “The one program running at all times on the computer” is the kernel
– Everything else is either a system program (ships with the operating system)

or an application program

Lec 1.131/16/2024 Kubiatowicz CS162 © UCB Spring 2024

One Definition of an Operating System

• Special layer of software that provides application software access to
hardware resources

– Convenient abstraction of complex hardware devices
– Protected access to shared resources
– Security and authentication
– Communication

Hardware

applnapplnappln

OS

Lec 1.141/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Operating System

Switchboard Operator

Computer Operators

Operating System

Lec 1.151/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Operating System

What makes something a system?
• Multiple interrelated parts

– Each potentially interacts with the others
• Robustness requires an engineering mindset

– Meticulous error handling, defending against malicious careless users
– Treating the computer as a concrete machine, with all of its limitations and possible failure

cases

System programming is an important part of this class!

Lec 1.161/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Hardware/Software Interface

Storage

Processor

Hardware Memory

Networks

DisplaysInputs

Instruction Set Architecture (ISA)

OS Memory

Ctrlr

Cache

Page
Table
& TLB

Software What you learned in
CS 61C – Machine
Structures (and C)

Running
Program

The OS abstracts
these hardware details
from the application

Lec 1.171/16/2024 Kubiatowicz CS162 © UCB Spring 2024

What is an Operating System?

• Illusionist
– Provide clean, easy-to-use abstractions of physical resources

» Infinite memory, dedicated machine
» Higher level objects: files, users, messages
» Masking limitations, virtualization

Lec 1.181/16/2024 Kubiatowicz CS162 © UCB Spring 2024

OS Basics: Virtualizing the Machine

Processor MemoryPgTbl
& TLB Storage

Networks

Hardware

I/O Ctrlr

ISA

Operating System

Process: Execution environment with restricted rights provided by OS

OS
Mem

Compiled
Program

System Libs

Threads Address Spaces Files Sockets

Lec 1.191/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Processor MemoryPgTbl
& TLB Storage

Networks

Hardware

I/O Ctrlr

Operating System

OS
Mem

Compiled Program’s View of the World

ISA

Process: Execution environment with restricted rights provided by OS
Threads Address Spaces Files Sockets

Compiled
Program

System Libs

• Application’s “machine” is the process abstraction provided by the OS
• Each running program runs in its own process
• Processes provide nicer interfaces than raw hardware

Lec 1.201/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Processor MemoryPgTbl
& TLB Storage

Networks

Hardware

I/O Ctrlr

Operating System

OS
Mem

ISA

System Programmer’s View of the World

Process: Execution environment with restricted rights provided by OS
Threads Address Spaces Files Sockets

Program

Compiler

System Libs
Linker

• Application’s “machine” is the process abstraction provided by the OS
• Each running program runs in its own process
• Processes provide nicer interfaces than raw hardware

Lec 1.211/16/2024 Kubiatowicz CS162 © UCB Spring 2024

What’s in a Process?
A process consists of:
• Address Space
• One or more threads of control executing in that address space
• Additional system state associated with it

– Open files
– Open sockets (network connections)
– …

Lec 1.221/16/2024 Kubiatowicz CS162 © UCB Spring 2024

For Example…

Lec 1.231/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Compiler

Operating System’s View of the World

Processor MemoryPgTbl
& TLB Storage

Networks

Hardware

I/O Ctrlr

ISA

Operating System

Process 1

Threads

OS
Mem

Address Spaces Files Sockets

Process 2

Threads Address Spaces Files Sockets

Compiled
Program 1

System Libs

Compiled
Program 2

System Libs

Lec 1.241/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Compiler
Process 2

Running
Program 2

System Libs

Operating System’s View of the World

Processor MemoryPgTbl
& TLB Storage

Networks

Hardware

I/O Ctrlr

ISA

Operating System

Process 1

Threads

OS
Mem

Address Spaces Files Sockets Threads Address Spaces Files Sockets

Running
Program 1

System Libs

• OS translates from hardware interface to application interface
• OS provides each running program with its own process

Lec 1.251/16/2024 Kubiatowicz CS162 © UCB Spring 2024

What is an Operating System?

• Referee
– Manage protection, isolation, and sharing of resources

» Resource allocation and communication
• Illusionist

– Provide clean, easy-to-use abstractions of physical resources
» Infinite memory, dedicated machine
» Higher level objects: files, users, messages
» Masking limitations, virtualization

Lec 1.261/16/2024 Kubiatowicz CS162 © UCB Spring 2024

PgTbl
& TLB Storage

Networks

Hardware

I/O Ctrlr

ISA

Operating System

Compiler

OS Basics: Running a Process

Processor Memory

Process 1

Threads Address Spaces Files Sockets

Process 2

Threads Address Spaces Files Sockets

Compiled
Program 1

System Libs

Compiled
Program 2

System Libs

Lec 1.271/16/2024 Kubiatowicz CS162 © UCB Spring 2024

PgTbl
& TLB Storage

Networks

Hardware

I/O Ctrlr

ISA

Operating System

Compiler

OS Basics: Switching Processes

Processor Memory

Process 1

Threads

OS
Mem

Address Spaces Files Sockets

Process 2

Threads Address Spaces Files Sockets

Compiled
Program 1

System Libs

Compiled
Program 2

System Libs

Lec 1.281/16/2024 Kubiatowicz CS162 © UCB Spring 2024

PgTbl
& TLB Storage

Networks

Hardware

I/O Ctrlr

ISA

Operating System

Compiler

OS Basics: Switching Processes

Processor Memory

Process 1

Threads

OS
Mem

Address Spaces Files Sockets

Process 2

Threads Address Spaces Files Sockets

Compiled
Program 1

System Libs

Compiled
Program 2

System Libs

Lec 1.291/16/2024 Kubiatowicz CS162 © UCB Spring 2024

PgTbl
& TLB Storage

Networks

Hardware

I/O Ctrlr

ISA

Operating System

Compiler

OS Basics: Switching Processes

Processor Memory

Process 1

Threads

OS
Mem

Address Spaces Files Sockets

Process 2

Threads Address Spaces Files Sockets

Compiled
Program 1

System Libs

Compiled
Program 2

System Libs

Lec 1.301/16/2024 Kubiatowicz CS162 © UCB Spring 2024

PgTbl
& TLB Storage

Networks

Hardware

I/O Ctrlr

ISA

Operating System

Compiler

OS Basics: Switching Processes

Processor Memory

Process 1

Threads

OS
Mem

Address Spaces Files Sockets

Process 2

Threads Address Spaces Files Sockets

Compiled
Program 1

System Libs

Compiled
Program 2

System Libs

Lec 1.311/16/2024 Kubiatowicz CS162 © UCB Spring 2024

PgTbl
& TLB Storage

Networks

Hardware

I/O Ctrlr

ISA

Operating System

Compiler

OS Basics: Protection

Processor Memory

Process 1

Threads

OS
Mem

Address Spaces Files Sockets

Process 2

Threads Address Spaces Files Sockets

Compiled
Program 1

System Libs

Compiled
Program 2

System Libs

Lec 1.321/16/2024 Kubiatowicz CS162 © UCB Spring 2024

PgTbl
& TLB Storage

Networks

Hardware

I/O Ctrlr

ISA

Compiler

Operating System

OS Basics: Protection

Processor Memory

Process 1

Threads

OS
Mem

Address Spaces Files Sockets

Process 2

Threads Address Spaces Files Sockets

Compiled
Program 1

System Libs

Compiled
Program 2

System Libs

Segmentation fault
(core dumped)

Lec 1.331/16/2024 Kubiatowicz CS162 © UCB Spring 2024

OS Basics: Protection

Storage

Processor

OS Hardware Virtualization

Hardware

Software

Memory

Process 1

ISA

OS Memory

Protection
Boundary

Networks Displays

Inputs

Process 2 Process 3
• OS isolates processes

from each other

• OS isolates itself from
other processes

• … even though they
are actually running
on the same hardware!

Ctrlr

Lec 1.341/16/2024 Kubiatowicz CS162 © UCB Spring 2024

What is an Operating System?

• Referee
– Manage protection, isolation, and sharing of resources

» Resource allocation and communication
• Illusionist

– Provide clean, easy-to-use abstractions of physical resources
» Infinite memory, dedicated machine
» Higher level objects: files, users, messages
» Masking limitations, virtualization

• Glue
– Common services

» Storage, Window system, Networking
» Sharing, Authorization
» Look and feel

Lec 1.351/16/2024 Kubiatowicz CS162 © UCB Spring 2024

OS Basics: I/O

Storage

Processor

OS Hardware Virtualization

Hardware

Software

Memory

Process 1

ISA

OS Memory

Protection
Boundary

Networks Displays

Inputs

Process 2 Process 3

• OS provides
common services in
the form of I/O

Ctrlr

Lec 1.361/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Compiler

OS Basics: Look and Feel

Processor MemoryPgTbl
& TLB Storage

Networks Displays

Hardware

I/O Ctrlr

ISA

Operating System

Process: Execution environment with restricted rights provided by OS

OS
Mem

Compiled
Program

System Libs

Threads Address Spaces Files Sockets Windows

Lec 1.371/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Compiler

OS Basics: Background Management

Processor MemoryPgTbl
& TLB Storage

Networks Displays

Hardware

I/O Ctrlr

ISA

Operating System

Process: Execution environment with restricted rights provided by OS

OS
Mem

Compiled
Program

System Libs

Threads Address Spaces Files Sockets Windows

Battery

Power
Manager

Network
Manager

Lec 1.381/16/2024 Kubiatowicz CS162 © UCB Spring 2024

What is an Operating System?

• Referee
– Manage protection, isolation, and sharing of resources

» Resource allocation and communication
• Illusionist

– Provide clean, easy-to-use abstractions of physical resources
» Infinite memory, dedicated machine
» Higher level objects: files, users, messages
» Masking limitations, virtualization

• Glue
– Common services

» Storage, Window system, Networking
» Sharing, Authorization
» Look and feel

Lec 1.391/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Why take CS162?
• Some of you will actually design and build operating systems or

components of them.
– Perhaps more now than ever

• Many of you will create systems that utilize the core concepts in operating
systems.

– Whether you build software or hardware
– The concepts and design patterns appear at many levels

• All of you will build applications, etc. that utilize operating systems
– The better you understand their design and implementation, the better use

you’ll make of them.

Lec 1.401/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Who am I? John Kubiatowicz (Prof “Kubi”)
• Background in Hardware Design

– Alewife project at MIT
– Designed CMMU, Modified SPAR C processor
– Helped to write operating system

• Background in Operating Systems
– Worked for Project Athena (MIT)
– OS Developer (device drivers, network file systems)
– Worked on Clustered High-Availability systems.

• Peer-to-Peer
– OceanStore project – Store your data for 1000 years
– Tapestry and Bamboo – Find you data around globe
– One of the first cloud storage projects! (Before the cloud!)

• Quantum Computing
– Exploring architectures for quantum computers
– CAD tool set yields some interesting results

• SwarmLAB/Berkeley Lab for Intelligent Edge
– Global Data Plane (GDP)/DataCapsules
– Fog Robotics
– Hardened Data Containers

Tessellation
A
lewife

O
ceanStore

Global D
ata

Plane

John Kubiatowicz
(KUBI)

Lec 1.411/16/2024 Kubiatowicz CS162 © UCB Spring 2024

CS162 TAs: Sections TBA

Shreyas Kallingal
(Head-TA)

Jacob Leigh Preston McCrary Ryan Alameddine Gaurav Bhatnagar

Christopher Chou Diana Poplacenel Vivek Verma Tiffany Wang Ethan Zhang

Lec 1.421/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Enrollment
• This term class size is limited for funding reasons

– We expanded the class last week to 13 sections and 404 students
» No more expansion
» Replacements will come off the waitlist

– Please do not email us asking for special reordering of the waitlist!
» Ordering is dictated by department policy!

• This is an Early Drop Deadline course (January 26th)
– If you are not serious about taking this class, please drop quickly

» Department will continue to admit students as other students drop
– Really hard to drop afterwards!

» Don’t forget to keep up with work if you are still on the waitlist!
• As long as you are on the waitlist or applying for concurrent enrollment,

you must do the work!
– If you are no longer interested in the course, please remove yourself from waitlist

Lec 1.431/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Infrastructure, Textbook & Readings
• Infrastructure

– Website: https://cs162.org
– EdStem: https://edstem.org/us/courses/50852
– Lecture Recordings: Tentatively as links off main class page (within

one week?)
• Textbook: Operating Systems: Principles and Practice

(2nd Edition) Anderson and Dahlin
– Suggested readings posted along with lectures
– Try to keep up with material in book as well as lectures

• Supplementary Material
– Operating Systems: Three Easy Pieces,

by Remzi and Andrea Arpaci-Dusseau, available for free online
– Linux Kernel Development, 3rd edition, by Robert Love

• Online supplements
– See course website
– Includes Appendices, sample problems, etc.
– Networking, Databases, Software Eng, Security
– Some Research Papers!

Lec 1.441/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Syllabus
• OS Concepts: How to Navigate as a Systems Programmer!

– Process, I/O, Networks and Virtual Machines
• Concurrency

– Threads, scheduling, locks, deadlock, scalability, fairness
• Address Space

– Virtual memory, address translation, protection, sharing
• File Systems

– I/O devices, file objects, storage, naming, caching, performance,
paging, transactions, databases

• Distributed Systems
– Protocols, N-Tiers, RPC, NFS, DHTs, Consistency, Scalability,

multicast
• Reliability & Security

– Fault tolerance, protection, security
• Cloud Infrastructure

Lec 1.451/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Learning by Doing
• Individual Homeworks (2-3 weeks) - preliminary

– 0. Tools & Environment, Autograding, recall C, executable
– 1. Lists in C
– 2. BYOS – build your own shell
– 3. Sockets & Threads in HTTP server
– 4. Memory mapping and management
– 5. Map Reduce

• Three (and ½) Group Projects
– 0. Getting Started (Individual, before you have a group)
– 1. User-programs (exec & syscall)
– 2. Threads & Scheduling
– 3. File Systems

Lec 1.461/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Group Projects
• Project teams have 4 members!

– never 5, 3 requires serious justification
– Must work in groups in “the real world”
– Same section (at least same TA)

• Communication and cooperation will be essential
– Regular in-person meetings very important!
– Joint work on Design Documents
– Slack/Messenger/whatever doesn’t replace face-to-face!

• Everyone should do work and have clear responsibilities
– You will evaluate your teammates at the end of each project
– Dividing up by Task is the worst approach. Work as a team.

• Communicate with supervisor (TAs)
– What is the team’s plan?
– What is each member’s responsibility?
– Short progress reports are required
– Design Documents: High-level description for a manager!

Lec 1.471/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Getting started
• EVERYONE (even if you are on the waitlist!):

Start homework 0 right away (hopefully Today!), project 0 next week
– Github account
– VM environment for the course

» Consistent, managed environment on your machine
– Get familiar with all the cs162 tools
– Submit to autograder via git

• First two weeks, attend any section you want
– We’ll assign permanent sections after forming project groups
– Section attendance will be mandatory after we form groups
– These section times will be adjusted after we have a better idea where people are

Lec 1.481/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Preparing Yourself for this Class
• The projects will require you to be very comfortable with programming and

debugging C
– Pointers (including function pointers, void*)
– Memory Management (malloc, free, stack vs heap)
– Debugging with GDB

• You will be working on a larger, more sophisticated code base than anything
you've likely seen in 61C!

• Review Session on the C language
– Time and logistics TBA, but soon!

• "Resources" page on course website
– Ebooks on “git” and “C”

• C programming reference (still in beta):
– https://cs162.org/ladder/

• First two sections are also dedicated to programming and debugging review:
– Attend ANY sections in first two weeks

Lec 1.491/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Grading (Tentative breakdown)
• 36% three midterms (12% each)

– Thursday, 2/15 (8-10pm), No class on day of Midterm (extra OH)
– Thursday, 3/14 (8-10pm), No class on day of Midterm (extra OH)
– Thursday, 4/25 (8-10pm), No class on day of Midterm (extra OH)
– These will be IN-PERSON!

• 36% projects
• 18% homework
• 10% participation (Sections, Lecture, …)
• No final exam
• Projects

– Initial design document, Design review, Code, Final design
– Submission via git push triggers autograder

Lec 1.501/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Personal Integrity

• UCB Academic Honor Code: "As a member of the UC
Berkeley community, I act with honesty, integrity, and
respect for others."

http://asuc.org/honorcode/resources/HC%20Guide%20for%20Syllabi.pdf

Lec 1.511/16/2024 Kubiatowicz CS162 © UCB Spring 2024

CS 162 Collaboration Policy

Explaining a concept to someone in another group
Discussing algorithms/testing strategies with other groups
Discussing debugging approaches with other groups
Searching online for generic algorithms (e.g., hash table)

Sharing code or test cases with another group
Copying OR reading another group’s code or test cases
Copying OR reading online code or test cases from prior years
Helping someone in another group to debug their code

• We compare all project submissions against prior year submissions and
online solutions and will take actions (described on the course overview
page) against offenders

• Don’t put a friend in a bad position by asking for help that they shouldn’t give!

Lec 1.521/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Typical Lecture Format

• 1-Minute Review
• 20-Minute Lecture
• 5- Minute Administrative Matters
• 25-Minute Lecture
• 5-Minute Break (water, stretch)
• 25-Minute Lecture

Attention

Time
20 min.Break “In Conclusion, ...”25 min.Break 25 min.

Lec 1.531/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Lecture Goal

Interactive!!!
Ask Questions in Chat

Lec 1.541/16/2024 Kubiatowicz CS162 © UCB Spring 2024

What makes Operating Systems
Exciting and Challenging?

Lec 1.551/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Societal Scale Information Systems
(Or the “Internet of Things”?)

Scalable, Reliable,
Secure Services

MEMS for
Sensor Nets

Internet
Connectivity

Databases
Information Collection
Remote Storage
Online Games
Commerce

…

• The world is a large distributed system
– Microprocessors in everything
– Vast infrastructure behind them Clusters

Massive Cluster

Gigabit Ethernet

Clusters

Massive Cluster

Gigabit Ethernet

Lec 1.561/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Technology Trends: Moore’s Law

2X transistors/Chip Every 1.5 years
Called “Moore’s Law”

Moore’s Law

Microprocessors have
become smaller, denser,
and more powerful

Gordon Moore (co-founder of
Intel) predicted in 1965 that the
transistor density of
semiconductor chips would
double roughly every 18
months

Lec 1.571/16/2024 Kubiatowicz CS162 © UCB Spring 2024

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Pe
rfo

rm
an

ce
 (v

s.
 V

AX
-1

1/
78

0)

25%/year

52%/year

??%/year

Big Challenge: Slowdown in Joy’s law of Performance

• VAX : 25%/year 1978 to 1986
• RISC + x86 : 52%/year 1986 to 2002
• RISC + x86 : ??%/year 2002 to present

From Hennessy and Patterson, Computer
Architecture: A Quantitative Approach, 4th edition,
Sept. 15, 2006

 Sea change in chip design:
multiple “cores” or processors
per chip

3X

Lec 1.581/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Another Challenge: Power Density

• Moore’s law extrapolation
– Potential power density reaching amazing levels!

• Flip side: battery life very important
– Moore’s law yielded more functionality at equivalent

(or less) total energy consumption

Lec 1.591/16/2024 Kubiatowicz CS162 © UCB Spring 2024

ManyCore Chips: The future arrived in 2007

• How to program these?
– Use 2 CPUs for video/audio
– Use 1 for word processor, 1 for browser
– 76 for virus checking???

• Parallelism must be exploited at all levels
• Amazon X1 instances (2016)

– 128 virtual cores, 2 TB RAM

• Intel 80-core multicore chip (Feb 2007)
– 80 simple cores
– Two FP-engines / core
– Mesh-like network
– 100 million transistors
– 65nm feature size

• Intel Single-Chip Cloud
Computer (August 2010)
– 24 “tiles” with two cores/tile
– 24-router mesh network
– 4 DDR3 memory controllers
– Hardware support for message-passing

Lec 1.601/16/2024 Kubiatowicz CS162 © UCB Spring 2024

But then Moore’s Law Ended…

• Moore’s Law has (officially) ended -- Feb 2016
– No longer getting 2 x transistors/chip every 18 months…
– or even every 24 months

• May have only 2-3 smallest geometry fabrication plants left:
– Intel and Samsung and/or TSMC

• Vendors moving to 3D stacked chips
– More layers in old geometries

Lec 1.611/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Storage Capacity is Still Growing!

Lec 1.621/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Society is Increasingly Connected…

Lec 1.631/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Network Capacity Still Increasing

(source: http://www.ospmag.com/issue/article/Time-Is-Not-Always-On-Our-Side)

Lec 1.641/16/2024 Kubiatowicz CS162 © UCB Spring 2024

• In 2011, smartphone shipments exceeded PC shipments!
• 2011 shipments:

– 487M smartphones
– 414M PC clients

» 210M notebooks
» 112M desktops
» 63M tablets

– 25M smart TVs

• 4 billion phones in the world  smartphones over next few
years

• Then…

Not Only PCs connected to the Internet

1.53B in 2017

262.5M in 2017

164M in 2017

39.5M in 2017

Lec 1.651/16/2024 Kubiatowicz CS162 © UCB Spring 2024

People-to-Computer Ratio Over Time

years

Computers
Per Person

103:1

1:106

Laptop

PDA

Mainframe

Mini

Workstation

PC

Cell

1:1

1:103

Mote!

Bell’s Law: new computer class per 10 years
The Internet
of Things!

Number
crunching,
Data Storage,
Massive Inet
Services,
ML, …

Productivity,
Interactive

Streaming
from/to the
physical
world

Lec 1.661/16/2024 Kubiatowicz CS162 © UCB Spring 2024

What is an Operating System Again?
• Referee

– Manage sharing of resources, Protection,
Isolation

» Resource allocation, isolation, communication
• Illusionist

– Provide clean, easy to use abstractions of
physical resources

» Infinite memory, dedicated machine
» Higher level objects: files, users, messages
» Masking limitations, virtualization

• Glue
– Common services

» Storage, Window system, Networking
» Sharing, Authorization
» Look and feel

Lec 1.671/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Challenge: Complexity
• Applications consisting of…

– … a variety of software modules that …
– … run on a variety of devices (machines) that

» … implement different hardware architectures
» … run competing applications
» … fail in unexpected ways
» … can be under a variety of attacks

• Not feasible to test software for all possible
environments and combinations of components and
devices

– The question is not whether there are bugs but how
serious are the bugs!

Lec 1.681/16/2024 Kubiatowicz CS162 © UCB Spring 2024

The World Is Parallel: e.g. Intel Saphire Rapids (2023)
• Up to 60 cores, 120 threads/package (socket)

– Up to 4 “chiplets” bonded together
• Network:

– On-chip Mesh Interconnect
– Fast off-chip network (UPI):

directly connects 8-chips
– 480 cores/shared memory domain!

• Each Core Has:
– 80 KB L1 Cache
– 2 MB L2 Cache
– Fraction of up to 112.5 MB L3 Cache

• DRAM/chips
– Up to 4 TiB of DDR5 memory

• Many Accellerators of different types
– Graphics, Encryption, AI, Security Saphire Rapids 4-chiplet single package

Lec 1.691/16/2024 Kubiatowicz CS162 © UCB Spring 2024

HW Functionality comes with great complexity!

Intel 700 Chipset I/O Configuration

Direct Media Interface
(8-16 GBytes/sec)

Really High Speed
I/O (e.g. graphics)

Memory Channels
(High BW DRAM)

High-Speed I/O
devices (PCI Exp)

Disks (8 x SATA 3.0)

Slower I/O (USB)

Integrated 2.5G Ethernet
HD Audio

RAID 0/1/5/10

Intel Management Engine
(ME) and BIOS Support
[remote management]

Integrated WiFi 6E

Integrated WiFi 7

Integrated Ethernet

Lec 1.701/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Increasing Software Complexity

0 20 40 60 80 100 120 140

Mouse Base Pairs

Modern Car

Mac OS X "Tiger"

Facebook

Windows Vista

Microsoft Office 2013

Windows 7

Linux 3.1 (recent)

Android

Firefox

Mars Curiosity Rover

Linux 2.2.0

Millions of Lines of Code
(source https://informationisbeautiful.net/visualizations/million-lines-of-code/)

Lec 1.711/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Example: Some Mars Rover (“Pathfinder”) Requirements
• Pathfinder hardware limitations/complexity:

– 20Mhz processor, 128MB of DRAM, VxWorks OS
– cameras, scientific instruments, batteries, solar panels, and locomotion equipment
– Many independent processes work together

• Can’t hit reset button very easily!
– Must reboot itself if necessary
– Must always be able to receive commands from Earth

• Individual Programs must not interfere
– Suppose the MUT (Martian Universal Translator Module) buggy
– Better not crash antenna positioning software!

• Further, all software may crash occasionally
– Automatic restart with diagnostics sent to Earth
– Periodic checkpoint of results saved?

• Certain functions time critical:
– Need to stop before hitting something
– Must track orbit of Earth for communication

• A lot of similarity with the Internet of Things?
– Complexity, QoS, Inaccessbility, Power limitations … ?

Lec 1.721/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Questions
• Does the programmer need to write a single program that performs many

independent activities?
• Does every program have to be altered for every piece of hardware?
• Does a faulty program crash everything?
• Does every program have access to all hardware?

Operating Systems help the
programmer write robust programs!

Lec 1.731/16/2024 Kubiatowicz CS162 © UCB Spring 2024

OS Abstracts the Underlying Hardware

• Processor → Thread
• Memory → Address Space
• Disks, SSDs, … → Files
• Networks → Sockets
• Machines → Processes

• OS as an Illusionist:
– Remove software/hardware quirks (fight complexity)
– Optimize for convenience, utilization, reliability, … (help the programmer)

• For any OS area (e.g. file systems, virtual memory, networking,
scheduling):

– What hardware interface to handle? (physical reality)
– What’s software interface to provide? (nicer abstraction)

Application

Operating System

Hardware
Physical Machine Interface

Abstract Machine Interface

Lec 1.741/16/2024 Kubiatowicz CS162 © UCB Spring 2024

OS Protects Processes and the Kernel

• Run multiple applications and:
– Keep them from interfering with or crashing the operating system
– Keep them from interfering with or crashing each other

Lec 1.751/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Basic Tool: Dual-Mode Operation

• Hardware provides at least two modes:
1. Kernel Mode (or “supervisor” mode)
2. User Mode

• Certain operations are prohibited when running in user mode
– Changing the page table pointer, disabling interrupts, interacting directly w/

hardware, writing to kernel memory
• Carefully controlled transitions between user mode and kernel mode

– System calls, interrupts, exceptions

Lec 1.761/16/2024 Kubiatowicz CS162 © UCB Spring 2024

UNIX System Structure

Lec 1.771/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Virtualization: Execution Environments for Systems

Additional layers of protection and isolation can help further manage complexity

Lec 1.781/16/2024 Kubiatowicz CS162 © UCB Spring 2024

What is an Operating System,… Really?
• Most Likely:

– Memory Management
– I/O Management
– CPU Scheduling
– Communications? (Does Email belong in OS?)
– Multitasking/multiprogramming?

• What about?
– File System?
– Multimedia Support?
– User Interface?
– Internet Browser? 

• Is this only interesting to Academics??

Lec 1.791/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Operating System Definition (Cont.)

• No universally accepted definition
• “Everything a vendor ships when you order an

operating system” is good approximation
– But varies wildly

• “The one program running at all times on the
computer” is the kernel

– Everything else is either a system program (ships with
the operating system) or an application program

Lec 1.801/16/2024 Kubiatowicz CS162 © UCB Spring 2024

“In conclusion…Operating Systems:”
• Provide convenient abstractions to handle diverse hardware

– Convenience, protection, reliability obtained in creating the illusion
• Coordinate resources and protect users from each other

– Using a few critical hardware mechanisms
• Simplify application development by providing standard services
• Provide fault containment, fault tolerance, and fault recovery

• CS162 combines things from many other areas of computer
science:

– Languages, data structures, hardware, and algorithms

