
 Page 1/24

University of California, Berkeley
College of Engineering

Computer Science Division  EECS
Spring 2024

John Kubiatowicz

Midterm III
SOLUTION

April 25th, 2024
CS162: Operating Systems and Systems Programming

Your Name:

Your SID:

TA Name:

Discussion Section
Time:

General Information:
This is a closed book exam. You are allowed 3 pages of notes (both sides). You have 2 hours to
complete as much of the exam as possible. Make sure to read all of the questions first, as some of the
questions are substantially more time consuming. Write all of your answers directly on this paper.
Make your answers as concise as possible. On programming questions, we will be looking for
performance as well as correctness, so think through your answers carefully. If there is something
about the questions that you believe is open to interpretation, please ask us about it!

Problem Possible Score

1 18

2 20

3 23

4 17

5 22

Total 100

CS 162 Spring 2024 Midterm III SOLUTION April 25th, 2024

 Page 2/24

[This page left for ]

3.14159265358979323846264338327950288419716939937510582097494459230781640628620899

CS 162 Spring 2024 Midterm III April 25th, 2024

 Page 3/24

Problem 1: True/False [18 pts]
Please EXPLAIN your answer in TWO SENTENCES OR LESS (Answers longer than this may not
get credit!). Also, answers without an explanation GET NO CREDIT.

Problem 1a[2pts]: It is possible to make Remote Procedure Calls (RPCs) with integer arguments
between clients that use big-endian integers and servers that use little-endian integers.

  True ⬜ False
Explain: An important aspect of RPC is the fact that arguments are marshalled into a

standardized format at the source and unmarshalled at the destination. Thus, integers will be
converted to and from a network standard ordering into the local ordering on each end.

Problem 1b[2pts]: In the Pintos kernel, if you call intr_disable() and then dereference a NULL
pointer, your kernel will be stuck in an infinite loop, because the page fault trap cannot reach the CPU
when interrupts are disabled.

 ⬜ True  False
 Explain: Synchronous traps, such as page-faults, cannot be disabled by intr_disable().

Problem 1c[2pts]: The Clock algorithm is used to find a physical page that has not been accessed
in a while, thereby approximating a MIN replacement algorithm.

  True ⬜ False
Explain: Since the Clock algorithm provides an approximation to LRU, which provides an

approximation to MIN, the Clock algorithm approximates MIN. Another way to look at this, is that
the Clock algorithm finds old pages to replace, which are likely to be accessed further in the future
than recently access pages.

Problem 1d[2pts]: The FAT file system links together blocks in a file by including a pointer in
each block on disk to the next block on disk. In a FAT32 file system, this means that each block
stores 4 bytes less of user data than the size of the block on disk.

⬜ True  False
Explain: The FAT file system does not link blocks together with pointers in the data blocks.

Instead, it collects all of the pointers into the FAT data structure.

Problem 1e[2pts]: An M/M/1 queue has a deterministic distribution for both arrival times and service
times.

⬜ True  False
Explain: An M/M/1 queue has a memoryless (exponential) distribution for both arrival times

and service times.

CS 162 Spring 2024 Midterm III SOLUTION April 25th, 2024

 Page 4/24

Problem 1f[2pts]: A storage system protected by RAID6 can identify up to two faulty drives by
looking at the data returned from reads.

⬜ True  False
Explain: RAID6 is an erasure code. Consequently, it can only recover data from failed drives

after they have been identified; some other mechanism must first identify drives as failed (such as
error codes on the drives themselves).

Problem 1g[2pts]: Journaling file systems use a log to make multi-operation updates atomic in the
face of OS crashes.

 True ⬜ False
Explain: These file systems write operations to the log first, without changing the actual file

system. Only after all of the operations have been made durable in the log does the file system write
a final “commit” record, thereby making sure that partial updates will be ignored if the OS crashes
before the “commit” is written.

Problem 1h[2pts]: For modern disk drives, the transfer rate for sectors on outer cylinders is higher
than for sectors on inner cylinders.

 True ⬜ False
Explain: Since the bit density is constant on the surface of a platter and the disk rotation

speed is constant, more bits per unit time go under the read heads when they are on the outer cylinders
than when they are on the inner cylinders. Consequently, the transfer rate (in bits/second) is higher
on the outer cylinders than on the inner cylinders.

Problem 1i[2pts]: SSDs utilize FLASH memory which wears out as it is written.

 True ⬜ False
Explain: As FLASH cells are repeatedly written and erased, charges get stuck in the

insulators, thereby compromising the ability of these cells to differentiate between a 0 and a 1.

CS 162 Spring 2024 Midterm III April 25th, 2024

 Page 5/24

Problem 2: Multiple Choice [20pts]
Problem 2a[2pts]: Which of the following best describes the source of the Meltdown security flaw
(made public in 2018)? (Choose one):

A: ◯ A system call implemented by multiple operating systems neglected to properly check
arguments and could thus be fooled into returning the contents of protected memory to
users.

B: ⨂ User code could execute speculative loads to addresses marked as “kernel-only” in a user’s
page table and use the result to effect the state of the cache before the load results could be
squashed by the processor pipeline.

C: ◯ Unmapped physical pages (i.e. that were not in an page table) could be accessed by user-
level code because of a timing bug in the x86 processor between TLB lookup and cache
access.

D: ◯ Linux version 2.4 had a stack-overflow bug which would allow it to be tricked into mapping
kernel pages into the user page table.

E: ◯ Speculative execution of arithmetic operations on out-of-order pipelines could be made to
reveal the contents of kernel memory by tricking the kernel into changing the timing of
operations based on the contents of its private data.

 B: TRUE. The Meltdown flaw involved speculative out-of-order execution, in which speculative
operations could be made to impact a cache timing channel. E is FALSE because the Meltdown
flaw involved loads and stores to protected kernel memory.

Problem 2b[2pts]: Little’s Law has the following properties (Choose all that apply):

A: ⬜ It applies only to memoryless arrival distributions.

B:  It says that the average number of jobs in the system is equal to the average arrival rate of
jobs multiplied by the average length of time that a job stays in the system.

C: ⬜ It explains why the average length of time spent in a queue grows without bound as the
system utilization approaches 100%.

D: ⬜ It can be applied to systems that are not in equilibrium.

E: ⬜ None of the above.

 A: FALSE. Little’s Law is correct regardless of the distribution of arrivals.
 B: TRUE. This is literally a statement of Littles law in words (which is N = T).
 C: FALSE. Little’s Law doesn’t explain why queues grow in length, merely allows you to compute the

length of a queue, given the average wait time.
 D: FALSE. Little’s Law is only for systems in equilibrium.
 E: FALSE. Obviously.

CS 162 Spring 2024 Midterm III SOLUTION April 25th, 2024

 Page 6/24

Problem 2c[2pts]: Memory-mapped I/O is (Choose one):

A: ◯ A security mechanism for I/O devices that that prevents user-mode applications from
directly accessing these devices, forcing device access to go through the system call
interface.

B: ◯ A software protocol that constructs a coherent distributed shared memory between multiple
physical nodes, allowing communication between nodes to occur as reads and writes to the
shared memory (address) space.

C: ◯ A technique for communication between processes using the mmap() system call. As a
result, processes can interact via reads and writes to shared memory addresses

D: ⨂ A hardware mechanism for assigning physical memory addresses to devices such that
processor read and write operations to these addresses become commands to devices.

E: ◯ None of the above.

 D: TRUE. As discussed multiple times in class, memory-mapped I/O is an alternative to port-mapped
I/O as a way for the processor to access device controllers. Note that C is false because the mmap()
system call is for mapping memory addresses to files, but this is not typically called “memory-
mapped I/O” (and D is more correct).

Problem 2d[2pts]: Which of the following are true regarding buffer caches? (Choose all that apply):

A:  In file systems without a journal, delayed writes can allow temporary files to be created,
written, read, and deleted without ever impacting the disk.

B: ⬜ Since FIFO is an approximation to MIN, we can easily handle buffer cache replacement by
linking all buffer cache pages into a circular list.

C:  The buffer cache can improve file system performance in situations in which multiple
processes simultaneously write to random parts of the disk.

D:  The buffer cache can participate in the prevention of compulsory misses during sequential
reads from large files.

E: ⬜ The buffer cache is a write-through cache.

 A: TRUE. Until they are flushed to disk, file system modifications are kept in the buffer cash. This
includes creation and deletion of files.

 B: FALSE. FIFO replacement makes no attempt to choose pages based on expected future usage, so
cannot be an approximation to MIN.

 C: TRUE. When multiple processes write to files, updated disk blocks are likely to be randomly
distributed over the disk. By placing writes in the buffer cache, the OS can reorder blocks to better
reflect disk-level locality (e.g. using the elevator algorithm), thus improving performance.

 D: TRUE. The buffer cache provides an ideal place for prefetched blocks, since they can be easily
found by reads and writes.

 E: FALSE. Write-through to disk would be a very bad idea (millions of instructions/write). In fact,
the buffer cache provides a write-back cache.

Problem 2e[2pts]: Which of the following are true about the Pintos file system? (Choose all that
apply):

A: ⬜ File names for a given directory are stored as strings inside the directory’s inode.

B:  A directory can only hold up to a maximum number of directory entries.

C: ⬜ In order to resolve a relative path passed into the open syscall, the root inode sector has to
be read from the disk.

D:  A directory entry always corresponds to an inumber on the disk.

E: ⬜ The directory path “/../../” is invalid.

CS 162 Spring 2024 Midterm III April 25th, 2024

 Page 7/24

 A: FALSE. Filenames are stored in datablocks, not the inode (which points at blocks).
 B: TRUE. Since Pintos has a maximum file size, this means that directories (which are just files)

have a maximum number of directory entries that they can hold (limited by maximum directory size).
 C: FALSE. If the current working directory (CWD) has already been used, then the resolution of a

relative path could start there, rather than with the root directory.
 D: TRUE. Since directories are just files, they have inodes just like files. Inodes have an associated

inumber on the disk.
 E: FALSE. In the root directory, “..” just resolves to the root (like “.”). So, “/../../” is just another

name for the root directory.

Problem 2f[2pts]: Which of the following statements about I/O performance are true? (Choose all
that apply):

A:  The elevator algorithm can improve hard disk drive performance by handling I/O requests
in order of physical location rather than in order of arrival.

B:  For many I/O devices, the effective bandwidth of a request can be improved by increasing
the size of the request (in bytes).

C:  If the requests entering a queue are combined from many different (uncorrelated) sources,
then the arrival distribution can be roughly modeled by an exponential (memoryless)
distribution.

D: ⬜ SSDs have a seek time that is higher than the time to perform a write.

E: ⬜ None of the above.

 A: TRUE. This is literally a description of what the elevator algorithm does.
 B: TRUE. Assume the time to perform an access can be expressed with a simple linear equation such

as: 𝑇 ൌ 𝑇௢ ൅
ௌ

஻ೃ
, where To is overhead and BR is the raw bandwidth, then effective bandwidth is just:

𝐵ா ൌ
ௌ

்
ൌ ቀ ௌ

೚்ൈ஻ೃାௌ
ቁ ൈ 𝐵ோ, which grows (increases) toward BR as S grows.

 C: TRUE. This is the basic premise for using a memoryless distribution on arrival times in the
queueing equations given in class.

 D: FALSE. SSDs don’t have seek times.
 E: FALSE. For obvious reasons.

Problem 2g[2pts]: In UNIX, which of the following I/O devices can be accessed using file operations
like open() and close()? (Choose all that apply):

A:  Network devices (WiFi, Bluetooth, wired Ethernet).
B:  A mouse.
C:  The internal hard drive.
D:  A serial device connecting to a terminal.
E:  A printer.

 A-E: TRUE. UNIX provides an “everything is a file” API. In addition to the normal I/O access
interfaces, such as Socket I/O and File I/O (which explains A and C being true), all I/O devices have
raw device access files in the /dev directory and can be accessed with open() and close().

CS 162 Spring 2024 Midterm III SOLUTION April 25th, 2024

 Page 8/24

Problem 2h[2pts]: Which of the following are true about modern hard disks? (Mark all that apply):

A: ⬜ They have an independent disk head on every surface of every platter. As a result, the disk
can simultaneously read or write from different tracks on different platters.

B:  Some of them gain bit density by overlapping tracks.
C:  Their internal controllers contain memory for caching, allowing them to read a whole track

at a time.

D: ⬜ They have a lower bit density on the outside tracks from the inside tracks (because the
surface of the outside tracks move under the disk head faster than that of the inside tracks).

E:  Their internal controllers can queue requests and perform variants of the elevator algorithm
without consulting the operating system.

 A: FALSE. Disk heads are locked together on a single disk arm. Consequently, the disk heads are
not independent. Without moving the disk arm, they need to read from/write to the same track on
different platters (i.e. the same cylinder). As a secondary reason for this to be false, the DSP
processors are typically able to read from only a single head on a single surface at a time.

 B: TRUE. Disks that use SMR (“Shingled Magnetic Recording”) write data in a pattern that
resembles shingles on a roof: each write overlaps an adjacent track.

 C: TRUE. Disks have plenty of RAM on the controllers for caching (just look at disk specs from, say
Seagate).

 D: FALSE. Bit density (bits/square inch) is constant across the writeable surface of the disk. The
reason for this is that maximum bit density is a property of the magnetic material and recording
technique. As an asside, since the rotational rate is constant independent of disk head position, this
means that the read/write rate is higher on the outside tracks than it is on the inside tracks.

 E: TRUE. Disk controllers have internal queues and perform their own optimization of accesses.

Problem 2i[2pts]: The Berkeley FFS has the following properties (Mark all that apply):

A: ⬜ It changed the inode format from the BSD 4.1 file system to better reflect the overwhelming
presence of small files in a typical UNIX filesystem.

B:  It reserved 10% of the blocks to ensure that new files could get sequential groups of blocks
for better read performance.

C:  It performed skip-sector allocation of blocks to prevent processor delays during reading
from missing blocks and forcing a complete rotation for each block read.

D:  It placed the inodes and blocks for files within a directory close to the blocks and inodes for
the directory to improve performance.

E: ⬜ It introduced a B-tree format for directories in order get better lookup performance for
directories with large numbers of files.

 A: FALSE. The FFS (BSD 4.2) kept the same format for inodes as BSD 4.1.
 B: TRUE. As discussed in class.
 C: TRUE. As discussed in class.
 D: TRUE. As discussed in class.
 E: FALSE. Directories were still formatted in a linear, unsorted fashion.

CS 162 Spring 2024 Midterm III April 25th, 2024

 Page 9/24

Problem 2j[2pts]: Which of the following are true about the Clock Algorithm? (Choose all that
apply):

A:  To examine the state of a particular physical page and thus determine if it should be
replaced, the Clock Algorithm must examine all PTEs (in all of the page tables) that point
at the physical page.

B: ⬜ The Clock Algorithm arranges physical pages in a ring and keeps a pointer (clock hand) to
a page within the ring. During a page fault, it uses the first physical page pointed at by the
clock hand to hold incoming data, after which it advances the clock hand to the next page.

C:  The Clock Algorithm arranges physical pages in a ring and keeps a pointer (clock hand) to
a page within the ring. During a page fault, it chooses a page to hold incoming data by
looking at pages one at a time, starting with the current clock hand, until it finds one that
hasn’t been used recently.

D:  The Clock Algorithm provides an approximation to LRU.

E: ⬜ The Clock Algorithm arranges physical pages into two groups – an active group that is
mapped as “valid” and managed in a FIFO list and an inactive group that is mapped as
“invalid” and managed as an LRU list.

 A: TRUE. Since the clock algorithm must figure out if the physical page under the clock hand has
been touched (“used”) recently, it must hunt down the PTEs pointing at the page to see if any of
them have their “Use” bit set. .

 B: FALSE. This description would be true if we were trying to implement a FIFO replacement policy.
However, it is not what the clock algorithm does.

 C: TRUE. This is a valid description of what the clock algorithm does. Note that this answer differs
from B in that it describes walking through pages under the clock hand until it finds one that hasn’t
been used recently – rather than grabbing the first page.

 D: TRUE. This is true because the clock algorithm finds “an old page”, which is an approximation
to LRU.

 E: FALSE. This description is for the “Second Chance” algorithm, not the clock algorithm

CS 162 Spring 2024 Midterm III SOLUTION April 25th, 2024

 Page 10/24

[This Page Intentionally Left Blank]

CS 162 Spring 2024 Midterm III April 25th, 2024

 Page 11/24

Problem 3: Potpourri [23pts]
Problem 3a[2pts]: In Pintos, what is the significance of the PHYS_BASE constant? No more than
two sentence answer.

This is the beginning of kernel virtual memory (i.e. is above the maximum user virtual address). The
virtual address at PHYS_BASE maps physical page 0 (i.e. the base of physical memory).

Problem 3b[3pts]: Why is it important for the page fault exception to be precise? Make sure that
you define “precise exception” in your answer. No more than 2 sentences for the definition and one
sentence for why the page fault exception needs to be precise.

A precise exception is one which has a well-defined instruction in the execution stream for which the
processor state is as if (1) all prior instructions have finished and committed their results to
registers/memory and (2) the given instruction and all following instructions have not started nor
committed results.

If the page fault exception is precise, it is easy for the operating system to restart a user program after a
page fault.

Problem 3c[8pts]: For the following problem, assume a hypothetical machine with 4 pages
of physical memory and 7 pages of virtual memory. Given the access pattern:

A B C D E A A E C F F G A C G D C F
Indicate in the following table which pages are mapped to which physical pages for each of the
following policies. Assume that a blank box matches the element to the left. We have given the FIFO
policy as an example. Complete LRU and CLOCK. For CLOCK, assume that we check the page
under the clock hand, then increment; also, assume that pages brought in have Use=0 initially.

Access→ A B C D E A A E C F F G A C G D C F

F
IF

O

1 A E C
2 B A D
3 C F
4 D G

L
R

U

1 A E A F
2 B A G
3 C
4 D F D

C
L

O
C

K

1 A E 1 0 C 1 0
2 B A 1 0 1 0 F
3 C 1 0 G 1 0
4 D F 1 0 D

Hint on solving CLOCK problem above: The blue numbers represent the value of the Use bit for a particular
page. You were not required to include them. When page brought in, Use=0, so a letter implicitly includes
a blue 0. When a page is referenced, we set Use=1. Further, if we are looking for new page but Use=1, we
set to zero and advance clock hand.

CS 162 Spring 2024 Midterm III SOLUTION April 25th, 2024

 Page 12/24

Two-Phase Commit examples: In the following scenarios, consider the following responses to a
failure condition. Answer if it renders the system SAFE or UNSAFE and explain why:

Problem 3d[2pts]: The Coordinator sends a VOTE-REQ to the Workers and fails immediately.
After recovering, it sends a GLOBAL-ABORT to all Workers.

  SAFE ⬜ UNSAFE
Explain: It is always safe for the coordinator to choose to abort, as long as it hasn’t sent

commit messages yet. In this instance, abort is the right thing, since the coordinator has no idea
whether workers have responded, much less what they may have responded.

Problem 3e[2pts]: Suppose a Worker sends a vote to VOTE-COMMIT to the Coordinator and does
not hear back a response. After some timeout period, this means that the Coordinator lost its vote,
so the Worker aborts.

 ⬜ SAFE  UNSAFE
Explain: The communication channel between the Coordinator and the worker may just be

slow, and all other nodes received a decision to COMMIT already.

Problem 3f[2pts]: Suppose the Coordinator had a 30 second timeout frame. A Worker logs their
VOTE-COMMIT and before it can send its vote, it crashes and recovers within 2 seconds. This
Worker sends its vote to the Coordinator and crashes and recovers again. Then this Worker sends
its vote to the Coordinator for the second time.

  SAFE ⬜ UNSAFE
Explain: The worker is making sure that its vote makes it to the coordinator. Since it is just

repeating what it has already voted, it is not violating any semantics for 2PC.

CS 162 Spring 2024 Midterm III April 25th, 2024

 Page 13/24

Problem 3g[2pts]: Explain why RAID5 is no longer considered sufficient protection for storage
systems with large hard disk drives. No more than two sentence answer.

RAID 5 is only able to tolerate the failure of a single disk. Modern hard disk drives are so large that it
is possible that a second disk fails during the (long) process of recovering from a first disk failure.

Problem 3h[2pts]: List two reasons that SSDs must have a Flash Translation Layer (FTL). One
sentence per reason.

There are a number of reasons for this. Here are three:
1. The FTL is necessary to provide a layer of indirection between the block numbering of the OS and

the physical identities of individual pages inside the FLASH.
2. The FTL is necessary to track the frequency of writes to FLASH pages to avoid wearing them out

prematurely (this is called wear-levelling).
3. The FTL is necessary to garbage collect FLASH blocks by moving live data into other pages so

that empty blocks can be erased.

CS 162 Spring 2024 Midterm III SOLUTION April 25th, 2024

 Page 14/24

[This Page Intentionally Left Blank]

CS 162 Spring 2024 Midterm III April 25th, 2024

 Page 15/24

Problem 4: Pintos/File Systems [17pts]
Consider the following inode_disk and indirect_block struct similar to what is in Pintos. Suppose
sectors are 512 bytes.

struct inode_disk {
 block_sector_t direct[12];
 block_sector_t indirect;
 block_sector_t triply_indirect; // Note that this is a triply
 // and that there is no doubly!
 size_t size;
 void* unused[113];
};

struct indirect_block { // doubly and triply indirect blocks look like this
 block_sector_t block_nums[128];
}

Problem 4a[2pts]: What is the maximum file size supported by this design? Leave your answer
unsimplified in the box:

 512 ×(12+128+128×128×128)

Problem 4b[4pts]: How many sectors of each type are required to represent a maximum sized file
in this design? Leave your answer unsimplified in the box:

Data blocks:

 12+128+128×128×128

Indirect blocks:

 1+128×128

Doubly indirect blocks:

 128

Triply indirect blocks:

 1

CS 162 Spring 2024 Midterm III SOLUTION April 25th, 2024

 Page 16/24

Problem 4c[6pts]: Suppose that we have a file that is represented using the inode structures of (4a)
and (4b) and that the current size of the file is 12 * 512 bytes long. We now want to write 512
characters to the end of this file. You may use the following functions:

void block_read(void *buffer, block_sector_t block_num);
void block_write(void *buffer, block_sector_t block_num);
block_sector_t block_allocate();

The block sector corresponding to the file's inode_disk struct is 3:

block_sector_t FILE_INODE_BLOCK = 3;

Fill in the blanks in the following function such that after running this function, 512 characters are
written to this file and persisted. Assume that the file is exactly 12 blocks long already. You may
not need all of the blanks, but may only have 1 semicolon per line.

void Append512Chars () {
 struct inode_disk inode;

 block_read(&inode, FILE_INODE_BLOCK); // Read inode from disk

 inode.indirect = block_allocate(); // Allocate new block for indirect

 struct indirect_block indirect_block;
 indirect_block.block_nums[0] = block_allocate();
 char buffer[512];
 memset(buffer, 'a', 512);

 inode.size += 512; // Change the size

 block_write(buffer, indirect_block.block_nums[0]); // Persist data

 block_write(&indirect_block, inode.indirect); // Persist indirect

 block_write(&inode, FILE_INODE_BLOCK); // Persist inode
}

CS 162 Spring 2024 Midterm III April 25th, 2024

 Page 17/24

Problem 4d[2pts]: Explain what the mmap() system call does and how it can be used to enable fast
communication between two processes. No more than two sentence answer.

The mmap() system call is used to map a file into a region of a process’ address space such that reads and
writes to addresses in that region translate into reads and writes to the file. If two different processes
mmap() the same file into their separate address spaces, then they will be able exchange information
through shared memory (i.e. memory writes in one process will show up in the other one).

Problem 4e[3pts]: Rather than writing updated files to disk immediately when they are closed, many
UNIX systems use a delayed write-behind policy in which dirty disk blocks are flushed to disk once
every 30 seconds. List two advantages and one disadvantage of such a scheme: Only one sentence
for each category:

Advantage 1: Writes can be merged/rearranged for better disk performance (e.g. for
elevator scheduling).

Advantage 2: Temporary files can be created/deleted without ever going to disk.

Disadvantage: Data can be lost if system crashes before data pushed to disk.

CS 162 Spring 2024 Midterm III SOLUTION April 25th, 2024

 Page 18/24

[This Page Intentionally Left Blank]

CS 162 Spring 2024 Midterm III April 25th, 2024

 Page 19/24

Problem 5: Network Disk System [22pts]

In this problem, we are going to build a network storage system as shown above. This system is
going to serve storage blocks over the network to the workstation. This is a so-called “iSCSI”
system, in which the client sends requests over the network to remote disks using the iSCSI
protocol. The iSCSI protocol takes the normal SCSI commands that would be sent to a disk and
“wraps” them with TCP/IP and iSCSI overhead to transport over the network.

The workstation will be responsible for building the file system out of blocks that it accesses.
Consequently, the workstation will contain the block cache for this file system. Rather than
requesting blocks from a local set of disks, it will send requests over the network to a set of block
servers, each of which has its own queue and disk.

Properties of the network are as follows:

 Network bandwidth: 1Gb/s. Assume that transmission errors do not occur.
 Maximum packet size in network (MTU): 9KB (so-called “jumbo frames”)
 Overhead for packets: 40B (this is the TCP/IP packet overhead) + 60B (iSCSI protocol).

So, assume that every iSCSI packet is 100B + data size. Request packets have no data.
 The router is fully pipelined and can forward packets at network speed with a 2.2s delay.

Properties of the disks on the block servers are as follows:

 There are 10 servers. Each disk is 16TiB in size with a 4096B sector size.
 Disks rotate at 10,000 RPM, have a data transfer rate of 65,536 KB/s, and have a 5.8ms

average seek time. They also have a SCSI interface with a 200s controller time. Assume
that a group of consecutive sectors can be fetched with a single request.

 Our use of the disks to build a file system has a disk service distribution with C=1.5.
 Each disk can handle only one request at a time, but each disk in the system can be handling

a different request.

EACH OF THE FOLLOWING ANSWERS SHOULD BE SIMPLIFIED TO SINGLE NUMBERS.
HOWEVER, YOU MUST SHOW YOUR WORK TO GET CREDIT.

Problem 5a[3pts]: Suppose that the server takes 1s to receive packets after all the bits have
arrived (this is the interrupt service time). What is the latency for a request to make it from the
client to one of the servers? Hint: for network piece, since router is pipelined, compute transmission
time for request (iSCSI packet without data) along one network hop, then simply add router delay.

𝑇ோ் ൌ 𝑇ௐ௜௥௘ ൅ 𝑇ோ௢௨௧௘௥ ൅ 𝑇ூே் ൌ ቆ
ଵ଴଴஻ൈ଼್

ಳ

ଵ଴వ್
ೞ
ൈଵ଴షల ೞ

ഋೞ

ቇ ൅ 2.2𝜇𝑠 ൅ 1𝜇𝑠 ൌ 4𝜇𝑠

CS 162 Spring 2024 Midterm III SOLUTION April 25th, 2024

 Page 20/24

Problem 5b[3pts]: Suppose that the network controller on clients takes 1s to receive packets (this
is the interrupt service time). Also, suppose that the disk controller on servers is capable of DMA
directly into the network. How long will it take to send a sector worth of data from server to client
after the disk controller retrieves the data from disk? Hint: don’t forget the iSCSI packet overhead.

The only difference here with 5a is that we use 100B+4096B=4196B in the TWire term:

𝑇ோ் ൌ 𝑇ௐ௜௥௘ ൅ 𝑇ோ௢௨௧௘௥ ൅ 𝑇ூே் ൌ ൮
4196𝐵 ൈ 8 𝑏𝐵

10ଽ 𝑏𝑠 ൈ 10ି଺ 𝑠
𝜇𝑠

൲ ൅ 2.2𝜇𝑠 ൅ 1𝜇𝑠 ൌ 4𝜇𝑠 ൅ 32.768𝜇𝑠

ൌ 36.768𝜇𝑠

Problem 5c[4pts]: What is the average service time to retrieve a single sector from a random
location on a single disk, assuming no queuing time (i.e. the unloaded request time)? Hint: there
are four terms in this service time! Note: 4096 x 16 = 65,536 and 1/16=0.0625

𝑇ௌ௘௥ ൌ 𝑇஼௧௥௟ ൅ 𝑇ௌ௘௘௞ ൅ 𝑇ோ௢௧ ൅ 𝑇௑௙௘௥ ൌ

ൌ ൬200𝜇𝑠 ൈ 10ିଷ
𝑚𝑠
𝜇𝑠
൰ ൅ 5.8𝑚𝑠 ൅

1
2
𝑅 ቌ

60000 𝑚𝑠
𝑀𝑖𝑛

10000 𝑅
𝑀𝑖𝑛

ቍ ൅ ቌ
4096𝐵

65536 ൈ 10ଷ 𝐵𝑠 ൈ 10ିଷ 𝑠
𝑚𝑠

ቍ

ൌ 0.2𝑚𝑠 ൅ 5.8𝑚𝑠 ൅ 3𝑚𝑠 ൅ 0.0625𝑚𝑠 ൌ 9𝑚𝑠 ൅ 0.0625𝑚𝑠 ൌ 9.0625𝑚𝑠

Problem 5d[2pts]: How many sequential sectors would we have to combine together into a block
in order to achieve an effective transfer rate of at least 10% of the data transfer rate when reading a
block of data?

Assume we have N sectors in a block. Then, from 5c, our time to read a block (including
overhead) would be: 𝑇ௌ௘௥ ൌ 9𝑚𝑠 ൅ 𝑁 ൈ 0.0625𝑚𝑠

Effective Transfer Rate =
஻௬௧௘௦ ௜௡ ௔ ௕௟௢௖௞

்ೄ೐ೝ
ൌ ேൈସ଴ଽ଺஻

ଽ௠௦ାேൈ଴.଴଺ଶହ௠௦
ൌ 0.1 ൈ ቀ65536 ൈ 10ଷ ஻

௦
ൈ 10ିଷ ௦

௠௦
ቁ

Rearranging:
ேൈ଴.଴଺ଶହ

ଽ௠௦ାேൈ଴.଴଺ଶହ௠௦
ൌ 0.1  N=16

Note: you could have done this simply by saying:
்௜௠௘ ௪௜௧௛௢௨௧ ௢௩௘௥௛௘௔ௗ

்௜௠௘ ௪௜௧௛ ௢௩௘௥௛௘௔ௗ
ൌ ேൈ଴.଴଺ଶହ௠௦

ଽ௠௦ାேൈ଴.଴଺ଶହ௠௦
ൌ 0.1

Problem 5e[3pts]: Assuming that we arrange to keep all 10 of our servers busy with large requests,
such as in (5d), what fraction of our network bandwidth will be used for responses? You can
assume that the protocol will never split a sector across network packets. Express your answer as a
fraction. Hint: consider using the effective transfer rate from (5d). Also, compute number of
complete sectors that will fit into a jumbo packet and account for the iSCSI packet overhead as a
fractional increase to data bytes sent.

This problem simply requires you to figure out how much overhead is introduced in the network by
the iSCSI, then multiply by the data bandwidth (in bits!) coming off all 10 disks. Since a sector is
4096B, we can fit 2 of them into a jumbo packet. Such a packet would have an extra 100B of iSCSI

packet overhead. Thus, iSCSI blows up data BW by
ସ଴ଽ଺஻ൈଶାଵ଴଴஻

ସ଴ଽ଺஻ൈଶ
ൌ ଼ଶଽଶ

଼ଵଽଶ

𝐸𝑓𝑓𝑅𝑎𝑡𝑒

𝐵/𝑠
𝐷𝑖𝑠𝑘 ൈ 8

𝑏
𝐵 ൈ 10𝐷𝑖𝑠𝑘𝑠 ൈ ቀ

8292
8192ቁ

10ଽ 𝑏𝑠

ൌ ሺ65536 ൈ 10ଷ ൈ 0.1ሻ ൈ 8 ൈ 10 ൈ
8292
8192

ൈ 10ିଽ

ൌ
65536 ൈ 8 ൈ 8292 ൈ 10ି଺

8192
ൌ 64 ൈ 8292 ൈ 10ି଺ ൌ 0.530688

CS 162 Spring 2024 Midterm III April 25th, 2024

 Page 21/24

Problem 5f[4pts]: Suppose that the distribution of arrivals is memoryless. Assume that we choose
to use the large block size from (5d) and do not want add more than 75% latency because of
queueing time. Also assume that the combination of file system layout, access behavior, and disk
characterization leads to a coefficient of variance C=1.5. What is our target utilization on each
node? How many requests will be queued on average in each node (leave as a fraction)? Hint:
Little’s law might be helpful here, as would be u=Tser

𝑇௤ ൌ 𝑇ௌ௘௥ ൈ
ଵ

ଶ
ሺ1 ൅ 𝐶ሻ ൈ ௨

ଵି௨
  75% ൌ ଷ

ସ
ൌ ቂ ೜்

்ೄ೐ೝ
ൌ ଵ

ଶ
ሺ1 ൅ 𝐶ሻ ൈ ௨

ଵି௨
ቃ ൌ ଶ.ହ

ଶ
ൈ ௨

ଵି௨

଺

ଵ଴
ൌ ௨

ଵି௨
  𝑢 ൌ ଷ

଼

𝐿௤ ൌ 𝜆𝑇௤ ൌ 𝜆 ൬𝑇ௌ௘௥ ൈ
1
2
ሺ1 ൅ 𝐶ሻ ൈ

𝑢
1 െ 𝑢

൰ ൌ
1
2
ሺ1 ൅ 𝐶ሻ ൈ

𝑢ଶ

1 െ 𝑢
ൌ

5
4
ൈ

ቀ3
8ቁ

ଶ

ቀ1 െ 3
8ቁ

⟹ 𝐿௤ ൌ
9

32

Problem 5g[3pts]: Assume that we chose to use the large block size from (5d) and keep the latency
increase due to queueing to be 75%, as mentioned in (5f) and that we assume data is stored using
RAID6 (which means that 2 of the 10 disks are used for redundancy), what is the bandwidth of
actual data we can get from our system? You can leave this result as a product of integers.

This computation is just like (5e) except that we are only looking at data of reduced utilization
(not 100%, but rather 3/8 utilization) with no packet overhead and from 8 disks (at any given
time, only 8 disks have actual data, since the others have parity data for RAID6). We will also
leave the bandwidth in B/s, although b/s could be accepted as well:

Answer=ሺ65536 ൈ 10ଷ ൈ 0.1ሻ ஻/௦

஽௜௦௞
ൈ ଷ

଼
ൈ 8𝐷𝑖𝑠𝑘𝑠 ൌ 6553600 ൈ 3 ஻

௦
 ≡ 6553600 ൈ 24 ௕

௦

An alternate way to get the same answer would be to compute  as a way to find out number of

Blocks transferred per time: 𝑢 ൌ 𝜆𝑇ௌ௘௥ ⟹ 𝜆 ൌ
య
ఴ

ଵ଴௠௦
ൈ 1000௠௦

௦
ൌ ଷ଴଴

଼
𝑠ିଵ

Answer = 𝜆 ൈ 𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 ൈ 8 ൌ ଷ଴଴

଼
𝑠ିଵ ൈ ሺ4096𝐵 ൈ 16ሻ𝐷𝑖𝑠𝑘ିଵ ൈ 8𝐷𝑖𝑠𝑘𝑠 ൌ 6553600 ൈ 3 ஻

௦

CS 162 Spring 2024 Midterm III SOLUTION April 25th, 2024

 Page 22/24

[This Page Intentionally Left Blank]

CS 162 Spring 2024 Midterm III April 25th, 2024

 Page 23/24

[Scratch Page: Do not put answers here!]

CS 162 Spring 2024 Midterm III SOLUTION April 25th, 2024

 Page 24/24

[Scratch Page: Do not put answers here!]

