> University of California, Berkeley
> College of Engineering
> Computer Science Division — EECS

Spring 2024
John Kubiatowicz
Midterm II
March $14^{\text {th }}, 2024$
CS162: Operating Systems and Systems Programming

Your Name:	
Your SID:	
TA Name:	
Discussion Section Time:	

General Information:
This is a closed book exam. You are allowed 2 pages of notes (both sides). You have 2 hours to complete as much of the exam as possible. Make sure to read all of the questions first, as some of the questions are substantially more time consuming. Write all of your answers directly on this paper. Make your answers as concise as possible. On programming questions, we will be looking for performance as well as correctness, so think through your answers carefully. If there is something about the questions that you believe is open to interpretation, please ask us about it!

Problem	Possible	Score
1	18	
2	16	
3	14	
4	13	
5	19	
6	20	
Total	100	

[Happy π Day!]

3.14159265358979323846264338327950288419716939937510582097494459230781640628620899

Problem 1: True/False [18 pts]

Please EXPLAIN your answer in TWO SENTENCES OR LESS (Answers longer than this may not get credit!). Also, answers without an explanation GET NO CREDIT.

Problem 1a[2pts]: With the Round Robin scheduling policy, the larger the time quantum, Q , the higher the throughput of execution.

\square True \square False Explain:

Problem 1b[2pts]: If the Banker's algorithm finds that it's safe to allocate a resource to an existing thread, then all threads will eventually complete.

\square True \square False
 Explain:

Problem 1c[2pts]: Suppose that a shell program wants to execute another program and wait on its result. It does this by creating a thread, calling exec () from within that thread, then waiting in the original thread.

\square True \square False Explain:

Problem 1d[2pts]: Because the CFS scheduler uses the same mechanism to choose the next running thread regardless of whether a thread is interactive or computational, it has poor interactive behavior.

\square True \square False
 Explain:

Problem 1e[2pts]: A 2-way set-associative cache has a faster hit time than a direct-mapped cache.

\square True \square False
 Explain:

Problem 1f[2pts]: The Shortest Remaining Time First (SRTF) algorithm is the best preemptive scheduling algorithm that can be implemented in an Operating System.

\square True \square False Explain:

Problem $\mathbf{1 g [2 p t s] : ~ T h e ~ s i z e ~ o f ~ a n ~ i n v e r t e d ~ p a g e ~ t a b l e ~ g r o w s ~ w i t h ~ t h e ~ s i z e ~ o f ~ t h e ~ v i r t u a l ~ a d d r e s s ~}$ space that it is supporting.

\square True \square False Explain:

Problem 1h[2pts]: Anything that can be done with a monitor can also be done with semaphores.

\square True \square False
 Explain:

Problem 1i[2pts]: Page Tables have an important advantage over simple Segmentation Tables (i.e. using base and bound) for virtual address translation in that they eliminate external fragmentation in the physical memory space.

\square True \square False Explain:

Problem 2: Multiple Choice [16pts]

Problem 2a[2pts]: When a process asks the kernel for resources that cannot be granted without risking deadlock (as determined by the Banker's algorithm), the kernel must (choose one):
$\mathrm{A}: \bigcirc$ Preempt the requested resources from another process and give them to the requesting process, thereby avoiding cycles in the resource dependency graph.
$\mathrm{B}: \bigcirc$ Put the requesting process to sleep until the resources become available.
$\mathrm{C}: \bigcirc$ Send a SIGKILL to the requesting process to prevent deadlock from occurring.
$\mathrm{D}: \bigcirc$ This question does not make sense because the Banker's algorithm is run only when a new process begins execution.
$\mathrm{E}: \bigcirc$ Reboot the system, since there is no way to avoid deadlock

Problem 2b[2pts]: Suppose that two chess programs are running against one another on the same CPU with equal "nice" values. Also assume that the programs are given real-time limits on the total time they spend making decisions (similar to a real chess tournament). Why might one of the programs want to perform a lot of superfluous I/O operations? (choose one):
A: O
The extra I/O operations fool the virtual memory system into giving extra physical memory to the chess program, thereby speeding up its overall execution and allowing great search depth in the fixed time.
B: \bigcirc The random completion time for these I/O operations will serve as an important source of randomness, thereby improving the chess playing heuristics.
$\mathrm{C}: \bigcirc$ This will split up the long-running heuristic computation into many short bursts, thereby causing the chess program to be classified as "interactive" by the scheduler and thus receiving higher priority than the competing program.
$\mathrm{D}: \bigcirc$ This question does not make sense, since the extra I/O operations will only slow down chess program.
$\mathrm{E}: \bigcirc$ To hide the fact that the program was cheating by receiving information from a real chess master over the network.

Problem 2c[2pts]: Which of the following are true about priority inversion? (choose all that apply):
A: \square Priority inversion could not occur if there were only two possible priorities for threads.
B: \square Priority donation is a solution to priority inversion.
C: \square Priority inversion could result in starvation of high priority threads.
$\mathrm{D}: \square$ Priority inversion is only a problem on a multi-core system.
E: \square Priority inversion would not happen in a first come first serve scheduler.

Problem 2d[2pts]: Assume we make a single memory access on a processor which has no caches and no TLB. All else being equal, which of the following are true? (choose all that apply):

A: \square Base-and-bound (with translation) will, on average, be faster than a single-level page table.
$B: \square \quad$ An inverted page table will, on average, be faster than a single-level page table.
$\mathrm{C}: \square \quad$ A single-level page table will, on average, be faster than a multi-level page table.
$D: \square \quad$ A multi-level page table will, on average, be faster than an inverted page table.
E: $\square \quad$ None of the above

Problem 2e[2pts]: Earliest Deadline First (EDF) scheduling has an important advantage over other scheduling schemes discussed in class because (choose one):

A: \bigcirc It can hand out more total processor cycles to an asynchronously arriving mix of real-time and non-realtime tasks than other scheduling schemes.
B: \bigcirc It schedules tasks based on deadlines and can thus provide realtime guarantees that other schemes we discussed in class cannot.
$\mathrm{C}: \bigcirc$ It can operate non-preemptively and is thus simpler than many other scheduling schemes.
$\mathrm{D}: \bigcirc$ It can provide the lowest average responsiveness to a set of tasks under all circumstanceseven in the presence of long-running computations.
$\mathrm{E}: \bigcirc$ Because it sorts the ready queue by deadline, it can handle oversubscription of the CPU better than other schemes we discussed in class.

Problem 2f[2pts]: Which of the following are true about schedulers (choose all that apply):
A: \square SRTF does not suffer from the Convoy effect.
B: $\square \quad$ The CFS scheduler implemented in Linux takes $O(\log n)$ time to pick the next task to run (where " n " is the total number of threads on the ready queue).
$\mathrm{C}: \square \quad$ FCFS provides an optimal (i.e minimum) total completion time (wall clock time) for any set of tasks.
D: \square Multi-level schedulers can provide good interactive responsiveness by modeling future behavior of threads.
E: $\square \quad$ A strict priority scheduler can experience starvation.
Problem 2g[2pts]: Debugging in Pintos can often be very difficult due to the complexity of the code base and often just staring at the code is an ineffective strategy. Which of the following are good strategies for debugging in Pintos? (choose all that apply):

A: $\square \quad$ Setting breakpoints in GDB to walk through specific function calls.
B: \square Setting memory watchpoints in GDB to watch for variable modifications.
$\mathrm{C}: \square \quad$ Checking function pre- and post-conditions with ASSERT statements.
D: \square Checking execution progress with PANIC statements.
E: \square Checking variables with print statements.

Problem 2h[2pts]: Consider a computer system with the following parameters:

Variable	Measurement	Value
$\mathrm{P}_{\mathrm{TLB}}$	Probability of TLB miss	0.1
P_{F}	Probability of a page fault when a TLB miss occurs on user pages (assume page faults do not occur on page tables).	0.0002
$\mathrm{P}_{\mathrm{L} 1}$	Probability of a first-level cache miss for all accesses	0.1
$\mathrm{~T}_{\mathrm{TLB}}$	Time to access TLB (hit)	1 ns
$\mathrm{~T}_{\mathrm{L} 1}$	Time to access L1 cache (hit)	5 ns
$\mathrm{~T}_{\mathrm{M}}$	Time to access DRAM	100 ns
$\mathrm{~T}_{\mathrm{D}}$	Time to transfer a page to/from disk	$10 \mathrm{~ms}=10,000,000 \mathrm{~ns}$

You can assume that TLB lookup does not occur in parallel with cache access. You can also assume that the TLB is refilled automatically by the hardware on a miss. The 2-level page tables are kept in physical memory and are cached like other accesses. Assume that the costs of the page replacement algorithm and updates to the page table are included in the T_{D} measurement. Also assume that no dirty pages are replaced and that pages mapped on a page fault are not cached.

What is the effective access time (the time for an application program to do one memory reference) on this computer? Assume physical memory is 100% utilized and ignore any software overheads in the kernel. (choose one):
$\mathrm{A}: \bigcirc T_{L 1}+P_{L 1} \times T_{M}+P_{T L B} \times\left(T_{T L B}+P_{F} \times T_{D}\right)$
$\mathrm{B}: \bigcirc T_{T L B}+\left(T_{L 1}+P_{L 1} \times T_{M}\right)+P_{T L B} \times\left\{2\left(T_{L 1}+P_{L 1} \times T_{M}\right)+P_{F} \times T_{D}\right\}$
$\mathrm{C}: \bigcirc T_{T L B}+\left(1-P_{T L B}\right) \times\left(T_{L 1}+P_{L 1} \times T_{M}\right)+$ $P_{T L B} \times\left\{2\left(T_{L 1}+P_{L 1} \times T_{M}\right)+\left(1-P_{F}\right) \times\left(T_{L 1}+P_{L 1} \times T_{M}\right)+P_{F} \times\left(T_{L 1}+T_{M}+T_{D}\right)\right\}$
$\mathrm{D}: \bigcirc T_{T L B}+\left(T_{L 1}+P_{L 1} \times T_{M}\right)+P_{T L B} \times\left(2 T_{M}+P_{F} \times T_{D}\right)$
$\mathrm{E}: \bigcirc\left(1-P_{T L B}\right) \times\left(T_{L 1}+P_{L 1} \times T_{M}\right)+P_{T L B} \times 2 T_{M}+P_{F} \times T_{D}$

[This Page Intentionally Left Blank]

Problem 3: Scheduling [14pts]

Problem 3a[3pts]: How could a strict priority scheduler be used to emulate Earliest Deadline First (EDF) scheduling? How often would you need to compute priorities (assuming that we schedule periodic tasks characterized by period T and computational time of C)? [Explain with no more than two sentences per question.]

Problem 3b[3pts]: How does the Linux CFS ("Completely Fair Scheduler") scheduler decide which thread to run next? What aspect of its behavior is "fair"? (You can ignore the presence of priorities or "nice" values in your answer): [Explain with no more than three sentences.]

Problem 3c[2pts]: Name two differences between interrupts and synchronous exceptions (such as page faults)? Provide only one sentence per difference:

Problem 3d[6pts]:

Consider the following table of processes and their associated arrival and running times.

Process ID	Arrival Time	CPU Running Time
Process A	0	2
Process B	1	6
Process C	4	1
Process D	7	4
Process E	8	3

Show the scheduling order for these processes under 3 policies: First Come First Serve (FCFS), Shortest-Remaining-Time-First (SRTF), Round-Robin (RR) with timeslice quantum = 1. Assume that context switch overhead is 0 , that new processes are available for scheduling as soon as they arrive, and that new processes are added to the head of the queue except for FCFS, where they are added to the tail.

Time Slot	FCFS	SRTF	RR
0			
1			
2			
3			
4			
5			
6			
7			
8			
10			
11			
12			
13			
14			
15			

Problem 4: DataBase Access [13pts]

Reader() {
Reader() {
//First check self into system
//First check self into system
lock.acquire();
lock.acquire();
while (AW > 0) {
while (AW > 0) {
WR++;
WR++;
okToRead.wait(\&lock);
okToRead.wait(\&lock);
WR--;
WR--;
}
}
AR++;
AR++;
lock.release();
lock.release();
// Perform actual read-only access
// Perform actual read-only access
AccessDatabase (ReadOnly);
AccessDatabase (ReadOnly);
// Now, check out of system
// Now, check out of system
lock.acquire();
lock.acquire();
AR--;
AR--;
if (AR == 0 \&\& WW > 0)
if (AR == 0 \&\& WW > 0)
okToWrite.signal();
okToWrite.signal();
lock.release();
lock.release();
}
}
Writer () \{
// First check self into system
lock.acquire();
while ($(A W+A R+W R)>0)$ \{
WW++;
okToWrite.wait(\&lock);
WW--;
\}
AW++;
lock.release();
// Perform actual read/write access
AccessDatabase (ReadWrite);
// Now, check out of system
lock.acquire();
AW--;
if (WR >0) \{
okToRead.broadcast();
\} else if (WW >0) \{
okToWrite.signal();
\}
lock.release();
\}

Problem 4a[3pts]: Above, we show a modified version of the Readers-Writers example given in class. It uses two condition variables, one for waiting readers and one for waiting writers. Suppose that all of the following requests arrive in very short order (while W_{1} is still executing):

Incoming stream: $\mathrm{W}_{1} \mathrm{R}_{1} \mathrm{R}_{2} \mathrm{R}_{3} \mathrm{~W}_{2} \mathrm{~W}_{3} \mathrm{R}_{4} \mathrm{R}_{5} \mathrm{R}_{6} \mathrm{~W}_{4} \mathrm{R}_{7}$
In what order would the above code process the above requests? If you have a group of requests that are equivalent (unordered), indicate this clearly by surrounding them with braces ' $\}$ '. You can assume that the wait queues for condition variables are FIFO in nature (i.e. signal() wakes up the oldest thread on the queue).

Problem 4b[2pts]: Let us define the logical arrival order by the order in which threads first acquire the monitor lock. Suppose that we wanted the results of reads and writes to the database to be the same as if they were processed one at a time - in their logical arrival order; for example, $\mathrm{W}_{1} \mathrm{R}_{1} \mathrm{R}_{2} \mathrm{R}_{3} \mathrm{~W}_{2} \mathrm{~W}_{3} \mathrm{R}_{4} \mathrm{R}_{5} \mathrm{R}_{6} \mathrm{~W}_{4}$ would be processed as $\mathrm{W}_{1}\left\{\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{R}_{3}\right\} \mathrm{W}_{2} \mathrm{~W}_{3}\left\{\mathrm{R}_{4} \mathrm{R}_{5} \mathrm{R}_{6}\right\} \mathrm{W}_{4}$ regardless of the speed with which these requests arrive. Explain why the above algorithm does not satisfy this constraint.

Problem 4c[8pts]: Suppose we wanted a logical processing order as defined in Problem 4b. Below is a sketch of a solution that uses only two condition variables and that does return results as if requests were processed in logical arrival order, as defined by the order in which requests acquire the lock at line \#7. Rather than separate methods for Reader() and Writer(), we provide a single access method, DBAccess () which takes a type argument (0 for read, 1 for write).

Let's continue to assume that our system uses Mesa scheduling and that condition variables have FIFO wait queues. The waitQueue condition variable will keep unexamined requests in FIFO order. The onDeckQueue keeps a single request that is currently incompatible with requests that are executing. Complete the DBAccessor code, below, assuming that you want to allow as many parallel requests to the database as possible, subject to the constraint of obeying logical arrival order and maintaining the readers/writers correctness constraint. You do not have to use every blank line, but you are also not allowed to add additional semicolons (';') to any of the lines either.

```
Lock MonitorLock; // Methods: acquire(),release()
Condition waitQueue, onDeckQueue; // Methods: wait(),signal(),broadcast()
int numQueued = 0, onDeck = 0; // Counts of sleeping threads
int curType = 0, numAccessing = 0; // Info about threads in DataBase.
DBAccess(int type) { // type = 0 for read, 1 for write
    /* Monitor to control entry so that one writer or multiple readers */
    MonitorLock.acquire();
    if (
        numQueued++;
        waitQueue.wait();
        numQueued--;
    }
    ___ {
        onDeck++;
        onDeckQueue.wait();
        onDeck--;
    }
```

\qquad

```
19. _
20. 
    MonitorLock.release();
    // Perform actual data access
    AccessDatabase(type);
    // Thread exit code
    MonitorLock.acquire();
```

\qquad

```
27. _
    MonitorLock.release();
```

28.

29
30. \}

Problem 5: Deadlock [19pts]

Problem 5a[2pts]:

The figure at the right illustrates a 2D mesh of network routers. Each router is connected to each of its neighbors by two network links (small arrows), one in each direction. Messages are routed from a source router to a destination router and can stretch through the network (i.e. consume links along the route from source to destination). Messages can cross inside routers.

Assume that no network link can service more than one message at a time, and that each message must consume a continuous set of channels (like a snake). Messages always make progress to the destination and never wrap back on themselves. The figure shows two messages (thick arrows).

Assume that each router or link has a very small amount of buffer space and that each message can be arbitrarily long. Show a simple situation (with a drawing) in which messages are deadlocked and can make no further progress. [Explain with no more than two sentences]:

Problem 5b[3pts]:

Define a routing policy that avoids deadlocks in the network of 5a. Sketch a proof that deadlocks cannot happen when using this routing policy. Hint: assume that a deadlock occurs and show why that leads to a contradiction in the presence of your new routing policy.

Problem 5c[3pts]: Pwnage Games decided to purchase Super Smash Bros. for Wii U -- a popular fighting video game -- in the hope that it would draw customers to the business. However, due to limited resources, the store could only buy one copy of the game. Luckily, the owners know Gill Bates -- a Cal EECS undergrad - who figured out how to allow multiple consoles to play the game at the same time. Unfortunately, she is forced to impose some conditions on the gameplay:

- each console only allows for two players to fight at a time;
- the same character cannot be used by more than one player at a time.

The enforcement of these conditions is handled after character selection. That is, all fighters appear available at all times, and the following function loads the fight. Each character has a global fighter_t* representing it across consoles.

```
pthread_mutex_t barracks_lock; // Global lock, initialized elsewhere
typedef struct fighter {
    char *name;
    pthread_mutex_t lock;
    ...
} fighter_t;
void smash(fighter_t* first, fighter_t* second) {
pthread_mutex_lock (&first->lock);
pthread_mutex_lock (&second->lock);
fight (first, second);
    pthread_mutex_unlock (&second->lock);
    pthread_mutex_unlock (&first->lock);
    }
```

Despite Gill's effort, her algorithm has an obvious flaw: smash() can lead to deadlock! Present an example of how this can happen. Explain with no more than two sentences.

Problem 5d[3pts]: Adding no more than two lines, redesign the smash () function to avoid deadlock. Make sure that multiple game consoles can still play at the same time. You can assume the presence of a global lock, called "barracks_lock", that has been initialized. Write your new version in the space below, then explain in one sentence how one of the four conditions of deadlock is eliminated by your solution. (You can copy a line or lines from $5 \mathbf{c}$ by writing "Line X " or "Lines $\mathrm{X}-\mathrm{Y}$ ", but must include all of lines 8-12 from original function).

```
void smash(fighter_t* first, fighter_t* second) {
```

\}

Problem 5e[2pts]: Assume that fighter's names are unique and that you have access to a string comparison function with the following signature:

```
// Returns: 0 if s1==s2, -1 if s1 < s2, and 1 if s1 > s2
int strcmp(char *s1, char *s2);
```

Write a deadlock free version of smash() that does not need to use the extra lock of 5d by filling in the blank lines below. You do not need to use all lines and must not add extra semicolons (";").

```
void smash(fighter_t* first, fighter_t* second)
{
    if (_
            pthread_mutex_lock (&first->lock);
            pthread_mutex_lock (&second->lock);
    } else {
```

\qquad
\qquad

```
    }
    fight (first, second);
    pthread_mutex_unlock (&second->lock);
    pthread_mutex_unlock (&first->lock);
}
```

Problem 5f[1pt]: Which version of your code (i.e. 5d or 5e) behaves better and why? [No more than two sentences]:

Problem 5g[2pts]: Suppose that we utilize the Banker's algorithm to determine whether or not to grant resource requests to threads. The job of the Banker's algorithm is to keep the system in a "SAFE" state. It denies resource requests by putting the requesting thread to sleep if granting the request would cause the system to enter an "UNSAFE" state, waking it only when the request could be granted safely. What is a SAFE state? [Define in no more than two sentences]:

Problem 5h[3pts]: Suppose that we have the following resources: A, B, C and threads T1, T2, T3, T4. The total number of each resource is:

Total		
A	B	C
12	9	12

Further, assume that the processes have the following maximum requirements and current allocations:

Thread ID	Current Allocation			Maximum			
	A	B	C	A	B	C	
T1	2	1	3	4	9	4	
T2	1	2	3	5	3	3	
T3	5	4	3	6	4	3	
T4	2	1	2	4	8	2	

Is the system in a safe state? If "yes", show a non-blocking sequence of thread executions. Otherwise, provide a proof that the system is unsafe. Show your work and justify each step of your answer.

Problem 6: Address Translation [20 pts]

Problem 6a[2pts]: In class, we discussed the "magic" address format for a multi-level page table on a 32-bit machine, namely one that divided the address as follows:

Virtual Page $\#$ $(10$ bits $)$	Virtual Page \# $(10$ bits $)$	Offset $(12$ bits $)$

You can assume that Page Table Entries (PTEs) are 32-bits in size in the following format:

Physical Page \# (20 bits)	OS Defined (3 bits)	\bigcirc				$\begin{aligned} & \text { Z } \\ & \stackrel{\circ}{0} \\ & \stackrel{\ddot{O}}{0} \end{aligned}$		$\underset{\sim}{\widetilde{\sim}}$	$\underset{\Xi}{\underset{0}{0}}$ تِ $\stackrel{0}{0}$	兑

What is particularly "magic" about this configuration? Make sure that your answer explains why this configuration is helpful for an operating system attempting to deal with limited physical memory.

Problem 6b[2pts]: Suppose you were interested in supporting more than 4GB (i.e 2^{32} bytes) of physical memory, while still supporting a 32-bit virtual address space. Further, suppose that you wanted to stick with 4-byte PTEs with the same hardware-defined page control and status bits as defined above. What is the maximum amount of physical memory you could easily support? Explain.

Problem 6c[2pts]: As discussed in lecture, the Translation Lookaside Buffer (TLB) caches translations between virtual and physical page numbers. Without caching translations, each memory operation would incur the overhead of a multi-level page-table access. For some processor architectures, however, you must occasionally flush (invalidate) all of the TLB entries, even though this will temporarily slow down the processor. Explain when and why we might need to do this:

Problem 6d[2pts]: Consider a multi-level memory management scheme using the following format for virtual addresses, including 2 bits worth of segment ID and an 8 -bit virtual page number:

Virtual seg \# $(2$ bits $)$	Virtual Page \# $(8$ bits $)$	Offset $(8$ bits $)$

Virtual addresses are translated into 16-bit physical addresses of the following form:

Physical Page $\#$ $(8$ bits $)$	Offset $(8$ bits $)$

Page table entries (PTE) are 16 bits in the following format, stored in big-endian form in memory (i.e. the MSB is first byte in memory):

Physical Page \# (8 bits)	$\begin{aligned} & \text { ત } \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & Z \\ & 0 \\ & 0 \\ & \stackrel{O}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	0	\bigcirc	灾	$\underset{\sim}{\underset{\sim}{x}}$		兑

How big is a page in the above scheme? Explain.

Problem 6e[2pts]: In the above scheme, the top two bits of the address are used to select a segment. If we were using an x86 processor, instead, where would the segment identifier come from?

Problem 6f[10pts]: Using the scheme from (6d) and the Segment Table and Physical Memory table on the next page, state what will happen with the following loads and stores. Addresses below are virtual, while base addresses in the segment table are physical. If you can translate the address, make sure to place it in the "Physical Address" column; otherwise state "N/A".

The return value for a load is an 8-bit data value or an error, while the return value for a store is either "ok" or an error. If there is an error, say which error. Possibilities are: "bad segment" (invalid segment), "segment overflow" (address outside segment), or "access violation" (page invalid/attempt to write a read only page). A few answers are given:

Instruction	Translated Physical Address	Result (return value)
Load [0x30115]	0×3115	0×57
Store [0x10345]	0×3145	Access violation
Store [0x30557]		
Test\&Set [0x11213]		
Load [0x31202]		
Store [0x31231]		
Load [0x01315]		

Segment Table (Segment limit = 3)

Seg \#	Page Table Base	Max Pages in Segment	Segment State
0	0×2030	0×20	Valid
1	0×1020	0×10	Valid
2	$0 \times F 5040$	0×40	Invalid
3	0×4000	0×20	Valid

Physical Memory

Address	+0	+1	+2	+3	+4	+5	+6	+7	+8	+9	+A	+B	+C	+D	+E	+F
0x0000	0E	0F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D
0x0010	1E	1F	20	21	22	23	24	25	26	27	28	29	2A	2B	2 C	2D
0x1010	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F
0x1020	40	03	41	01	30	01	31	01	00	03	00	00	00	00	00	00
0x1030	00	11	22	33	44	55	66	77	88	99	AA	BB	CC	DD	EE	FF
0x1040	10	01	11	03	31	03	13	00	14	01	15	03	16	01	17	00
2030	10	01	11	00	12	03		03		03	0		00		00	0
0x2040	02	20	03	30	04	40	05	50	01	60	03	70	08	80	09	90
0x2050	10	00	31	01	F0	03	F0	01	12	03	30	00	10	00	10	01
....																
0x3100	01	12	23	34	45	56	67	78	89	9A	AB	BC	CD	DE	EF	00
0x3110	02	13	24	35	46	57	68	79	8A	9B	AC	BD	CE	DF	F0	01
0x3120	03	01	25	36	47	58	69	7A	8B	9C	AD	BE	CF	E0	F1	02
0x3130	04	15	26	37	48	59	70	7B	8C	9D	AE	BF	D0	E1	F2	03
....																
0x4000	30	00	31	01	11	01	F0	03	34	01	35	07	43	38	32	79
0x4010	50	28	84	19	71	69	39	93	75	10	58	20	97	49	44	59
0x4020	23	03	20	03	E0	01	E1	08	E2	86	28	03	48	25	34	21
0xE000	AA	55														
0xE010	A5	5A														
0xF000	00	11	22	33	44	55	66	77	88	99	AA	BB	CC	DD	EE	FF
0xF010	11	22	33	44	55	66	77	88	99	AA	BB	CC	DD	EE	FF	00
0xF020	22	33	44	55	66	77	88	99	AA	BB	CC	DD	EE	FF	00	11
....																

[This Page Intentionally Left Blank]

[Scratch Page: Do not put answers here!]
[Scratch Page: Do not put answers here!]

