
 Page 1/22

University of California, Berkeley
College of Engineering

Computer Science Division EECS
Spring 2024

John Kubiatowicz

Midterm II
SOLUTION

March 14th, 2024
CS162: Operating Systems and Systems Programming

Your Name:

Your SID:

TA Name:

Discussion Section
Time:

General Information:
This is a closed book exam. You are allowed 2 pages of notes (both sides). You have 2 hours to
complete as much of the exam as possible. Make sure to read all of the questions first, as some of the
questions are substantially more time consuming. Write all of your answers directly on this paper.
Make your answers as concise as possible. On programming questions, we will be looking for
performance as well as correctness, so think through your answers carefully. If there is something
about the questions that you believe is open to interpretation, please ask us about it!

Problem Possible Score

1 18

2 16

3 14

4 13

5 19

6 20

Total 100

CS 162 Spring 2024 Midterm II SOLUTION March 14th, 2024

 Page 2/22

[Happy Day!]

3.14159265358979323846264338327950288419716939937510582097494459230781640628620899

CS 162 Spring 2024 Midterm II SOLUTION March 14th, 2024

 Page 3/22

Problem 1: True/False [18 pts]
Please EXPLAIN your answer in TWO SENTENCES OR LESS (Answers longer than this may not
get credit!). Also, answers without an explanation GET NO CREDIT.

Problem 1a[2pts]: With the Round Robin scheduling policy, the larger the time quantum, Q, the
higher the throughput of execution.

 True ⬜ False
Explain: With a larger time quantum, threads are interrupted less frequently. Consequently, there is

less overhead (saving and restoring of registers, pipeline interruption/draining) and processor mechanisms for
single-threaded performance have more chance to work (caching, branch prediction, etc.)

Problem 1b[2pts]: If the Banker's algorithm finds that it's safe to allocate a resource to an existing
thread, then all threads will eventually complete.

 ⬜ True False
Explain: Banker’s algorithm only prevents deadlocks caused by resource-related

dependency cycles. Threads could still fail to complete for a variety of other reasons (such as entering
an infinite loop).

Problem 1c[2pts]: Suppose that a shell program wants to execute another program and wait on its
result. It does this by creating a thread, calling exec() from within that thread, then waiting in the
original thread.

 ⬜ True False
Explain: If the shell only creates a new thread, then calling exec() within that thread will

completely replace the shell with the new program (and hence there won’t be an original thread to do
any waiting). The shell program needs to use fork() to create a new process in which to call exec(),
not a new thread.

Problem 1d[2pts]: Because the CFS scheduler uses the same mechanism to choose the next running
thread regardless of whether a thread is interactive or computational, it has poor interactive behavior.

 ⬜ True False
Explain: Interactive threads have short bursts and spend most time sleeping; consequently

they will not accumulate as much virtual time as computational threads and will thus run preferentially
when the are ready to run (e.g. when a user has just pressed a key on their keyboard).

Problem 1e[2pts]: A 2-way set-associative cache has a faster hit time than a direct-mapped cache.

⬜ True False
Explain: Unlike a direct-mapped cache, the 2-way set-associative cache must (1) compare

tags after the cache-bank lookup using the index, (2) use the result to select the direction of a mux and
(3) wait for the data to route through the mux. All of these combine to make a 2-way set-associative
cache slower than a direct-mapped cache.

CS 162 Spring 2024 Midterm II SOLUTION March 14th, 2024

 Page 4/22

Problem 1f[2pts]: The Shortest Remaining Time First (SRTF) algorithm is the best preemptive
scheduling algorithm that can be implemented in an Operating System.

⬜ True False
Explain: SRTF cannot be implemented, only approximated (it relies on perfectly predicting

the future). Consequently, this statement is false regardless of your definition of “best.”

Problem 1g[2pts]: The size of an inverted page table grows with the size of the virtual address
space that it is supporting.

⬜ True False
Explain: The inverted page table size grows with the size (in pages) of the physical memory.

This is because it only needs to hold the PTEs that are marked “valid” or “present”. During
virtualphysical mapping we can treat a missing entry as if it is an invalid PTE.

Problem 1h[2pts]: Anything that can be done with a monitor can also be done with semaphores.

 True ⬜ False
Explain: This is true because you can implement your own lock(), wait(), signal() operations

using semaphores, then insert them into you algorithm. The crucial aspect is that condition variables
can be implemented by combining a semaphore with an extra integer (use to count number of sleeping
threads, synchronized using monitor mutex).

Problem 1i[2pts]: Page Tables have an important advantage over simple Segmentation Tables (i.e.
using base and bound) for virtual address translation in that they eliminate external fragmentation in
the physical memory space.

 True ⬜ False
Explain: Since every page in physical memory is exactly the same size, they are all interchangeable

when placed into page tables. Consequently, free holes in physical memory can always be used regardless of
how long the system have been running; i.e. there is no external fragmentation.

CS 162 Spring 2024 Midterm II SOLUTION March 14th, 2024

 Page 5/22

Problem 2: Multiple Choice [16pts]
Problem 2a[2pts]: When a process asks the kernel for resources that cannot be granted without
risking deadlock (as determined by the Banker’s algorithm), the kernel must (choose one):

A: ◯ Preempt the requested resources from another process and give them to the requesting
process, thereby avoiding cycles in the resource dependency graph.

B: ⨂ Put the requesting process to sleep until the resources become available.

C: ◯ Send a SIGKILL to the requesting process to prevent deadlock from occurring.
D: ◯ This question does not make sense because the Banker’s algorithm is run only when a new

process begins execution.
E: ◯ Reboot the system, since there is no way to avoid deadlock

 A: FALSE. Preempting resources from a process could lead to incorrect behavior.
 B: TRUE. At each resource request, the Banker’s Algorithm works by simulating what would happen

if requested resources were granted, i.e. whether granting requests would lead to an UNSAFE state.
If an UNSAFE state would result, the Banker’s Algorithm would have to put the thread to sleep,
since it cannot grant the resources (and the thread would have an incorrect understanding of its
resources if it ran).

 C: FALSE. The Banker’s algorithm aims to avoid deadlock and allow all threads to complete.
 D: FALSE. The Banker’s algorithm runs on each resource request, not just at the start of a process.
 E: FALSE. The Banker’s algorithm puts threads to sleep before the system reaches a state in which

deadlock is unavoidable.

Problem 2b[2pts]: Suppose that two chess programs are running against one another on the same
CPU with equal “nice” values. Also assume that the programs are given real-time limits on the total
time they spend making decisions (similar to a real chess tournament). Why might one of the
programs want to perform a lot of superfluous I/O operations? (choose one):

A: ◯ The extra I/O operations fool the virtual memory system into giving extra physical memory
to the chess program, thereby speeding up its overall execution and allowing great search
depth in the fixed time.

B: ◯ The random completion time for these I/O operations will serve as an important source of
randomness, thereby improving the chess playing heuristics.

C: ⨂ This will split up the long-running heuristic computation into many short bursts, thereby
causing the chess program to be classified as “interactive” by the scheduler and thus
receiving higher priority than the competing program.

D: ◯ This question does not make sense, since the extra I/O operations will only slow down chess
program.

E: ◯ To hide the fact that the program was cheating by receiving information from a real chess
master over the network.

 A: FALSE. The paging heuristics used by the memory system either do not take I/O into account or .
 B: FALSE. There are better sources of randomness, so this is not the best answer
 C: TRUE. In class, we talked about a classic case of a contest between Othello-playing programs in

which one of the contestants broke up their execution by sprinkling printf operations throughout the
code, thereby getting the scheduler to misclassify the program and run it at higher priority.

 D: FALSE. I/O operations shorten overall burst time which will raise priority for some schedulers.
 E: FALSE. Presumably this option would be prevented by restricting outside network connections.

CS 162 Spring 2024 Midterm II SOLUTION March 14th, 2024

 Page 6/22

Problem 2c[2pts]: Which of the following are true about priority inversion? (choose all that
apply):

A: ⬜ Priority inversion could not occur if there were only two possible priorities for threads.
B: Priority donation is a solution to priority inversion.
C: Priority inversion could result in starvation of high priority threads.
D: ⬜ Priority inversion is only a problem on a multi-core system.
E: Priority inversion would not happen in a first come first serve scheduler.

 A: FALSE. We showed a two-thread inversion in class: If a low-priority thread grabs a lock, and a
high-priority threads spins in a loop waiting for the lock to be freed, we have a priority inversion.

 B: TRUE. Priority donation makes sure that the priority of a thread waiting for a lock is temporarily
donated to a low-priority lock holder, thus preventing the low priority thread from indefinitely
holding up a high-priority thread.

 C: TRUE. By definition, priority inversion is a form of starvation of a high-priority thread.
 D: FALSE. Priority inversion can happen with a single core.
 E: TRUE. Since an FCFS scheduler has no priorities (or only a single priority), there can be no

priority inversion.

Problem 2d[2pts]: Assume we make a single memory access on a processor which has no caches
and no TLB. All else being equal, which of the following are true? (choose all that apply):

A: Base-and-bound (with translation) will, on average, be faster than a single-level page table.

B: ⬜ An inverted page table will, on average, be faster than a single-level page table.

C: A single-level page table will, on average, be faster than a multi-level page table.

D: ⬜ A multi-level page table will, on average, be faster than an inverted page table.

E: ⬜ None of the above

 A: TRUE. Translation using a single-level page table requires one more memory access (for the
page table lookup) than base-and-bound (with translation).

 B: FALSE. Allowing for collisions in the hash, the inverted page table will require slightly more than
one access for each lookup, thus being slower than the single-level page table (or if there are no
collisions, the inverted page table will be as fast, making this FALSE still).

 C: TRUE. The multi-level page table will require more than one access to memory for each lookup,
while the single-level lookup requires only a single access.

 D: FALSE. The inverted page table will not, in general, encounter a hash collision for every lookup,
thus requiring less than two accesses on average for each lookup.

 E: FALSE. For obvious reasons.

Problem 2e[2pts]: Earliest Deadline First (EDF) scheduling has an important advantage over other
scheduling schemes discussed in class because (choose one):

A: ◯ It can hand out more total processor cycles to an asynchronously arriving mix of real-time
and non-realtime tasks than other scheduling schemes.

B: ⨂ It schedules tasks based on deadlines and can thus provide realtime guarantees that other
schemes we discussed in class cannot.

C: ◯ It can operate non-preemptively and is thus simpler than many other scheduling schemes.
D: ◯ It can provide the lowest average responsiveness to a set of tasks under all circumstances—

even in the presence of long-running computations.
E: ◯ Because it sorts the ready queue by deadline, it can handle oversubscription of the CPU

better than other schemes we discussed in class.

CS 162 Spring 2024 Midterm II SOLUTION March 14th, 2024

 Page 7/22

 A: FALSE. EDF cannot schedule more processor cycles than exist. In fact, because FCFS is
non-preemptive, it provides higher instruction throughput (processor efficiency) than EDF.

 B: TRUE. Assuming that the set of threads satisfy the scheduling sufficiency criteria, the EDF
scheduler can guarantee that it can meet the deadlines for threads, thus providing realtime
guarantees. None of the other schedulers we discussed in provide such guarantees.

 C: FALSE. EDF is a preemptive scheduler.
 D: FALSE. EDF guarantees that deadlines are met, which is a different requirement than

responsiveness.
 E: FALSE. No scheduler handles oversubscription well. In fact, EDF ceases to provide guarantees

and suffers from a type of cascading deadline failure when the CPU is oversubscribed.

Problem 2f[2pts]: Which of the following are true about schedulers (choose all that apply):

A: SRTF does not suffer from the Convoy effect.
B: The CFS scheduler implemented in Linux takes O(log n) time to pick the next task to run

(where “n” is the total number of threads on the ready queue).

C: ⬜ FCFS provides an optimal (i.e. minimum) total completion time (wall clock time) for any
set of tasks.

D: Multi-level schedulers can provide good interactive responsiveness by modeling future
behavior of threads.

E: A strict priority scheduler can experience starvation.

A: TRUE. The Convoy effect occurs when a short-burst thread gets scheduled (“stuck”)
behind a thread with a long burst. By definition, SRTF won’t let that happen.

B: TRUE. The CFS scheduler in Linux uses a red-black tree to sort tasks by their virtual time.
Operations in RB trees are O(log n), including finding and removing the smallest element.

 NOTE: Although the answer is TRUE, we also accepted FALSE because there have been
confusing answers in previous test solutions and class slides.

C: We accepted both TRUE and FALSE, since “total completion time” is confusing:
 TRUE. If “total completion time” just means time to complete all tasks, then this true,

since FCFS makes the fewest context switches/highest throughput execution.
 FALSE. If “total completion time” is the sum of completion times (part of computing

“average completion time”), then FCFS will provide the opposite of optimal completion
time (i.e. maximal time) if tasks arrive in reverse order of their burst times (i.e. longest first).

D: TRUE. Multilevel schedulers try to figure out the historical burst time for threads by
floating short running threads to the top queues and long running threads to the bottom
queues. It thus predicts the future behavior of threads based on the queue they are in.

E: TRUE. The continuous arrival of high priority threads can prevent the execution of lower-
priority threads, thus starving the low-priority threads.

`Problem 2g[2pts]: Debugging in Pintos can often be very difficult due to the complexity of the
code base and often just staring at the code is an ineffective strategy. Which of the following are
good strategies for debugging in Pintos? (choose all that apply):

A: Setting breakpoints in GDB to walk through specific function calls.
B: Setting memory watchpoints in GDB to watch for variable modifications.
C: Checking function pre- and post-conditions with ASSERT statements.
D: Checking execution progress with PANIC statements.
E: Checking variables with print statements.

A-E: TRUE. These are all valuable debugging techniques.

CS 162 Spring 2024 Midterm II SOLUTION March 14th, 2024

 Page 8/22

Problem 2h[2pts]: Consider a computer system with the following parameters:

Variable Measurement Value
PTLB Probability of TLB miss 0.1

PF Probability of a page fault when a TLB miss occurs on user
pages (assume page faults do not occur on page tables).

0.0002

PL1 Probability of a first-level cache miss for all accesses 0.1
TTLB Time to access TLB (hit) 1 ns
TL1 Time to access L1 cache (hit) 5ns
TM Time to access DRAM 100ns
TD Time to transfer a page to/from disk 10 ms = 10,000,000 ns

You can assume that TLB lookup does not occur in parallel with cache access. You can also assume
that the TLB is refilled automatically by the hardware on a miss. The 2-level page tables are kept in
physical memory and are cached like other accesses. Assume that the costs of the page replacement
algorithm and updates to the page table are included in the TD measurement. Also assume that no
dirty pages are replaced and that pages mapped on a page fault are not cached.

What is the effective access time (the time for an application program to do one memory
reference) on this computer? Assume physical memory is 100% utilized and ignore any software
overheads in the kernel. (choose one):

A: ◯ 𝑇 𝑃 𝑇 𝑃 𝑇 𝑃 𝑇

B: ◯ 𝑇 𝑇 𝑃 𝑇 𝑃 2 𝑇 𝑃 𝑇 𝑃 𝑇

C: ⨂ 𝑇 1 𝑃 𝑇 𝑃 𝑇
 𝑃 2 𝑇 𝑃 𝑇 1 𝑃 𝑇 𝑃 𝑇 𝑃 𝑇 𝑇 𝑇
D: ◯ 𝑇 𝑇 𝑃 𝑇 𝑃 2𝑇 𝑃 𝑇

E: ◯ 1 𝑃 𝑇 𝑃 𝑇 𝑃 2𝑇 𝑃 𝑇
 C: TRUE. Since all accesses have to perform a successful TLB lookup (either before or after handling

the TLB miss), we have one TTLB time guaranteed. Then, we have two options: (1) we hit in the TLB
with probability (1-PTLB) or (2) miss in the TLB with probablility PTLB. In the first case, data access
time is the AMAT for a one-level cache: 𝑇 𝑃 𝑇 . In the second case, data access time
includes page-table lookup time (i.e. two cached accesses to page table structures, 2 𝑇 𝑃
𝑇), and one of two options for subsequent access: (A) we do not have a page fault, with
probability (1-PF), or (B) we have a page fault, with probability PF. In case (A), data access time is
just the one-level AMAT: 𝑇 𝑃 𝑇 . In case (B), data access time involves the time to load
from DiskMemory (TD), then from MemoryCache (TM), then from CacheProcessor (TL1).

CS 162 Spring 2024 Midterm II SOLUTION March 14th, 2024

 Page 9/22

Problem 3: Scheduling [14pts]
Problem 3a[3pts]: How could a strict priority scheduler be used to emulate Earliest Deadline First
(EDF) scheduling? How often would you need to compute priorities (assuming that we schedule
periodic tasks characterized by period T and computational time of C)? [Explain with no more than
two sentences per question.]

At any given point in time, the set of active threads need to be sorted by the order of their deadlines, and
assigned priorities in deadline order (i.e. earlier deadlinehigher priority), one priority per thread.

The priority order would need to be recomputed whenever the set of deadlines changes, namely
whenever a deadline expires [the thread would be removed from the scheduler and reinserted with a
deadline that is later than the current time by its particular value of T]. Note that an efficient structure
such as a red-black tree would make resorting an O(log N) operation.

Problem 3b[3pts]: How does the Linux CFS (“Completely Fair Scheduler”) scheduler decide
which thread to run next? What aspect of its behavior is “fair”? (You can ignore the presence of
priorities or “nice” values in your answer): [Explain with no more than three sentences.]

The Linux CFS keeps all runnable but paused threads (i.e. those on the ready queue) sorted by their
virtual time, namely the amount of CPU time they have run so far. To pick a new thread to run, it simply
picks the runnable thread with the smallest virtual time. (Note: in class we discussed the fact that Linux
sorts threads in a red-black tree, but we didn’t require you to say this).

Ignoring “nice”, CFS provides a version of “fair” in which every runnable thread is given the same
fraction of CPU cycles, almost like we evenly split the CPU into N chunks for N threads.

Problem 3c[2pts]: Name two differences between interrupts and synchronous exceptions (such as
page faults)? Provide only one sentence per difference:

There are a number of things you could mention. Here are three:

1. Interrupts are asynchronous (occurring between instructions) while synchronous exceptions are
synchronous (occurring at the same place in the instruction stream every time).

2. Interrupts can be disabled with the interrupt disable mechanisms, whereas synchronous
exceptions cannot be disabled.

3. Interrupts originate from events external to the pipeline, whereas synchronous exceptions
represent conditions originating locally to the pipeline.

CS 162 Spring 2024 Midterm II SOLUTION March 14th, 2024

 Page 10/22

Problem 3d[6pts]:
Consider the following table of processes and their associated arrival and running times.

Process ID Arrival Time
CPU Running

Time
Process A 0 2
Process B 1 6
Process C 4 1
Process D 7 4
Process E 8 3

Show the scheduling order for these processes under 3 policies: First Come First Serve (FCFS),
Shortest-Remaining-Time-First (SRTF), Round-Robin (RR) with timeslice quantum = 1. Assume that
context switch overhead is 0, that new processes are available for scheduling as soon as they arrive,
and that new processes are added to the head of the queue except for FCFS, where they are added
to the tail.

Time Slot FCFS SRTF RR

0 A A A

1 A A B

2 B B A

3 B B B

4 B C C

5 B B B

6 B B B

7 B B D

8 C B E

9 D E B

10 D E D

11 D E E

12 D D B

13 E D D

14 E D E

15 E D D

CS 162 Spring 2024 Midterm II SOLUTION March 14th, 2024

 Page 11/22

Problem 4: DataBase Access [13pts]
Reader() {
 //First check self into system
 lock.acquire();
 while (AW > 0) {
 WR++;
 okToRead.wait(&lock);

 WR--;
 }
 AR++;
 lock.release();

 // Perform actual read-only access
 AccessDatabase(ReadOnly);

 // Now, check out of system
 lock.acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okToWrite.signal();
 lock.release();
}

Writer() {
 // First check self into system
 lock.acquire();
 while ((AW + AR + WR) > 0) {
 WW++;
 okToWrite.wait(&lock);
 WW--;
 }
 AW++;
 lock.release();

 // Perform actual read/write access
 AccessDatabase(ReadWrite);

 // Now, check out of system
 lock.acquire();
 AW--;
 if (WR > 0){
 okToRead.broadcast();
 } else if (WW > 0) {
 okToWrite.signal();
 }
 lock.release();
}

Problem 4a[3pts]: Above, we show a modified version of the Readers-Writers example given in
class. It uses two condition variables, one for waiting readers and one for waiting writers. Suppose
that all of the following requests arrive in very short order (while W1 is still executing):

 Incoming stream: W1 R1 R2 R3 W2 W3 R4 R5 R6 W4 R7

In what order would the above code process the above requests? If you have a group of requests that
are equivalent (unordered), indicate this clearly by surrounding them with braces ‘{}’. You can
assume that the wait queues for condition variables are FIFO in nature (i.e. signal() wakes up the
oldest thread on the queue).

W1 { R1 R2 R3 R4 R5 R6 R7 } W2 W3 W4

Problem 4b[2pts]: Let us define the logical arrival order by the order in which threads first acquire
the monitor lock. Suppose that we wanted the results of reads and writes to the database to be the
same as if they were processed one at a time – in their logical arrival order; for example,
W1 R1 R2 R3 W2 W3 R4 R5 R6 W4 would be processed as W1{R1 R2 R3} W2 W3 {R4 R5 R6} W4

regardless of the speed with which these requests arrive. Explain why the above algorithm does not
satisfy this constraint.

The above code does not satisfy this constraint because it gives priority to servicing reads over writes:
If a write comes in while any type of access is going on or while readers are waiting, it puts the write to
sleep. Writes will subsequently get to run only when there are no readers either running or sleeping.
Consequently, reads are reorder before writes (as shown in answer to 4a).

CS 162 Spring 2024 Midterm II SOLUTION March 14th, 2024

 Page 12/22

Problem 4c[8pts]: Suppose we wanted a logical processing order as defined in Problem 4b. Below
is a sketch of a solution that uses only two condition variables and that does return results as if requests
were processed in logical arrival order, as defined by the order in which requests acquire the lock at
line #7. Rather than separate methods for Reader() and Writer(), we provide a single access
method, DBAccess() which takes a type argument (0 for read, 1 for write).

Let’s continue to assume that our system uses Mesa scheduling and that condition variables have
FIFO wait queues. The waitQueue condition variable will keep unexamined requests in FIFO
order. The onDeckQueue keeps a single request that is currently incompatible with requests that
are executing. Complete the DBAccessor code, below, assuming that you want to allow as many
parallel requests to the database as possible, subject to the constraint of obeying logical arrival order
and maintaining the readers/writers correctness constraint. You do not have to use every blank line,
but you are also not allowed to add additional semicolons (‘;’) to any of the lines either.

 1. Lock MonitorLock; // Methods: acquire(),release()
 2. Condition waitQueue, onDeckQueue; // Methods: wait(),signal(),broadcast()
 3. int numQueued = 0, onDeck = 0; // Counts of sleeping threads
 4. int curType = 0, numAccessing = 0; // Info about threads in DataBase.

 5. DBAccess(int type) { // type = 0 for read, 1 for write
 6. /* Monitor to control entry so that one writer or multiple readers */
 7. MonitorLock.acquire();
 8. if (___) {
 9. numQueued++;
 10. waitQueue.wait();
 11. numQueued‐‐;
 12. }
 13. __ {
 14. onDeck++;
 15. onDeckQueue.wait();
 16. onDeck‐‐;
 17. }
 18. __ ;
 19. __ ;
 20. __ ;
 21. MonitorLock.release();

 22. // Perform actual data access
 23. AccessDatabase(type);

 24. // Thread exit code
 25. MonitorLock.acquire();
 26. __ ;
 27. __ ;
 28. __ ;
 29. MonitorLock.release();
 30. }

NOTES: We want to group requests in arrival order, so line 8 will queue a request on waitQueue if
there are any requests in front of it that aren’t executing yet (either in waitQueue or in onDeckQueue).
Consequently, requests access the database in the same order they acquire the lock in line 7. In line 13,
we hold up one request if it is incompatible with the group (one or more) of requests currently executing.
To perform that check, we keep track of the current type of the executing group (using ‘curType’).

Other NOTE: The above solution uses a “while” loop at line 13. An alternate solution would be to use
an “if” instead of “while” on line 13, then change line 27 to:

 if (numAccessing == 0) onDeckQueue.signal()

numQueued > 0 || onDeck > 0

while ((numAccessing > 0) && (type == 1 || curType == 1))

numAccessing++
curType = type
waitQueue.signal()

numAccessing‐‐
onDeckQueue.signal()

CS 162 Spring 2024 Midterm II SOLUTION March 14th, 2024

 Page 13/22

Problem 5: Deadlock [19pts]
Problem 5a[2pts]:
The figure at the right illustrates a 2D mesh of network routers.
Each router is connected to each of its neighbors by two network
links (small arrows), one in each direction. Messages are routed
from a source router to a destination router and can stretch
through the network (i.e. consume links along the route from
source to destination). Messages can cross inside routers.

Assume that no network link can service more than one
message at a time, and that each message must consume a
continuous set of channels (like a snake). Messages always make
progress to the destination and never wrap back on themselves.
The figure shows two messages (thick arrows).

Assume that each router or link has a very small amount of buffer space and that each message
can be arbitrarily long. Show a simple situation (with a drawing) in which messages are deadlocked
and can make no further progress. [Explain with no more than two sentences]:

Answer: The simplest deadlock example is a set of four messages in a loop (as
shown in the figure at the left). Each message is blocked attempting to make a
counter-clockwise turn by a message utilizing the target channel.

Problem 5b[3pts]:
Define a routing policy that avoids deadlocks in the network of 5a. Sketch a proof that deadlocks
cannot happen when using this routing policy. Hint: assume that a deadlock occurs and show why
that leads to a contradiction in the presence of your new routing policy.

The simplest policy was given in class: every message must route along the X direction first, then along
the Y direction. (The is called “dimension order routing” but you weren’t required to name it).

Proof that this is deadlock free by contradiction: assume there is a deadlock cycle. That would mean that
there is a set of messages deadlocked in a cycle. However, such a cycle would involve at least one message
that routed from the Y direction to the X direction, which is disallowed by our policy. Consequently, there
is no deadlock.

R R R R

R R R R

R R R R

R R R R

R R R R

R R R R

R R R R

R R R R

R R R R R R R R R R R R

R R R R R R R R R R R R R R R R

R R R R R R R R R R R R R R R R

R R R R R R R R R R R R R R R R

CS 162 Spring 2024 Midterm II SOLUTION March 14th, 2024

 Page 14/22

Problem 5c[3pts]: Pwnage Games decided to purchase Super Smash Bros. for Wii U -- a popular
fighting video game -- in the hope that it would draw customers to the business. However, due to
limited resources, the store could only buy one copy of the game. Luckily, the owners know Gill
Bates -- a Cal EECS undergrad – who figured out how to allow multiple consoles to play the game
at the same time. Unfortunately, she is forced to impose some conditions on the gameplay:
 - each console only allows for two players to fight at a time;
 - the same character cannot be used by more than one player at a time.

The enforcement of these conditions is handled after character selection. That is, all fighters appear
available at all times, and the following function loads the fight. Each character has a global fighter_t*
representing it across consoles.

 1. pthread_mutex_t barracks_lock; // Global lock, initialized elsewhere
 2. typedef struct fighter {
 3. char *name;
 4. pthread_mutex_t lock;
 5. ...
 6. } fighter_t;

 7. void smash(fighter_t* first, fighter_t* second) {
 8. pthread_mutex_lock (&first‐>lock);
 9. pthread_mutex_lock (&second‐>lock);
 10. fight (first, second);
 11. pthread_mutex_unlock (&second‐>lock);
 12. pthread_mutex_unlock (&first‐>lock);
 13. }

Despite Gill’s effort, her algorithm has an obvious flaw: smash() can lead to deadlock! Present an
example of how this can happen. Explain with no more than two sentences.

A simple example is one in which two consoles request the same two fighters (as defined by their
fighter_t* pointers) but in opposite orders. If the scheduler allows the first console to lock the first
fighter and the second console to lock the second fighter, then the system will be deadlocked.

Problem 5d[3pts]: Adding no more than two lines, redesign the smash() function to avoid deadlock.
Make sure that multiple game consoles can still play at the same time. You can assume the presence
of a global lock, called “barracks_lock”, that has been initialized. Write your new version in the
space below, then explain in one sentence how one of the four conditions of deadlock is eliminated
by your solution. (You can copy a line or lines from 5c by writing “Line X” or “Lines X-Y”, but must
include all of lines 8—12 from original function).

 void smash(fighter_t* first, fighter_t* second) {

 pthread_mutex_lock(&barracks_lock);
 Lines 8‐9
 Pthread_mutex_unlock(&barracks_lock);
 Lines 10‐12

 }

This solution eliminates “circular wait” because the only time that consoles would wait to acquire locks
on players would be after they already hold the barracks_lock. Since there can only be one thread
holding the barracks_lock at a time, there is no way to have two threads in a cyclic waiting pattern.

CS 162 Spring 2024 Midterm II SOLUTION March 14th, 2024

 Page 15/22

Problem 5e[2pts]: Assume that fighter’s names are unique and that you have access to a string
comparison function with the following signature:

// Returns: 0 if s1==s2, ‐1 if s1 < s2, and 1 if s1 > s2
 int strcmp(char *s1, char *s2);

Write a deadlock free version of smash() that does not need to use the extra lock of 5d by filling
in the blank lines below. You do not need to use all lines and must not add extra semicolons (“;”).

void smash(fighter_t* first, fighter_t* second)
{
 if (___) {
 pthread_mutex_lock (&first‐>lock);
 pthread_mutex_lock (&second‐>lock);
 } else {

 ___;

 ___;
 }
 fight (first, second);
 pthread_mutex_unlock (&second‐>lock);
 pthread_mutex_unlock (&first‐>lock);
}

Problem 5f[1pt]: Which version of your code (i.e. 5d or 5e) behaves better and why? [No more
than two sentences]:

The version of code in 5e behaves better than the code in 5d because the only time consoles are blocked
from playing in 5e is when they try to request a player that is currently in use by another console. In
contrast, the code in 5d could block a console requesting players that are not in use by anyone simply
because it cannot acquire the barracks_lock, which is held by some other console waiting for a player
to be available.

strcmp(first‐>name, second‐>name) < 0

pthread_mutex_lock(&second‐>lock)

pthread_mutex_lock(&first‐>lock)

CS 162 Spring 2024 Midterm II SOLUTION March 14th, 2024

 Page 16/22

Problem 5g[2pts]: Suppose that we utilize the Banker’s algorithm to determine whether or not to
grant resource requests to threads. The job of the Banker’s algorithm is to keep the system in a
“SAFE” state. It denies resource requests by putting the requesting thread to sleep if granting the
request would cause the system to enter an “UNSAFE” state, waking it only when the request could
be granted safely. What is a SAFE state? [Define in no more than two sentences]:

A SAFE state is one in which there exists a deadlock-free schedule for all threads to complete – without
requiring threads to prematurely give up the resources they already have and regardless of their future
patterns of allocation requests (not exceeding their specified maximum needs).

(In contrast, an UNSAFE state would be one that is either deadlocked or could deadlock from some
pattern of allocation requests that fall within the specified maximums given by threads).

Problem 5h[3pts]: Suppose that we have the following resources: A, B, C and threads T1, T2, T3,
T4. The total number of each resource is:

Further, assume that the processes have the following maximum requirements and current allocations:

Thread
ID

Current Allocation Maximum
A B C A B C

T1 2 1 3 4 9 4
T2 1 2 3 5 3 3
T3 5 4 3 6 4 3
T4 2 1 2 4 8 2

Is the system in a safe state? If “yes”, show a non-blocking sequence of thread executions. Otherwise,
provide a proof that the system is unsafe. Show your work and justify each step of your answer.

Answer: Yes, this system is in a safe state.
To prove this, we first compute the currently free allocations:

Further, we compute the number needed by each thread (Maximum – Current Allocation):
Thread

ID
Needed Allocation
A B C

T1 2 8 1
T2 4 1 0
T3 1 0 0
T4 2 7 0

Thus, we can see that a possible sequence is: T3, T2, T4, T1:

Thread
ID

Available Before Needed Allocation Current Allocation
A B C A B C A B C

T3 2 1 1 1 0 0 5 4 3
T2 7 5 4 4 1 0 1 2 3
T4 8 7 7 2 7 0 2 1 2
T1 10 8 9 2 8 1 2 1 3

Total
A B C
12 9 12

Available
A B C
2 1 1

CS 162 Spring 2024 Midterm II SOLUTION March 14th, 2024

 Page 17/22

Problem 6: Address Translation [20 pts]
Problem 6a[2pts]: In class, we discussed the “magic” address format for a multi-level page table on
a 32-bit machine, namely one that divided the address as follows:

Virtual Page #
(10 bits)

Virtual Page #
(10 bits)

Offset
(12 bits)

You can assume that Page Table Entries (PTEs) are 32-bits in size in the following format:

Physical Page #
(20 bits)

OS
Defined
(3 bits)

0

L
arge P

age

D
irty

A
ccessed

N
ocache

W
rite T

hrough

U
ser

W
riteable

V
alid

What is particularly “magic” about this configuration? Make sure that your answer explains why
this configuration is helpful for an operating system attempting to deal with limited physical
memory.

Each page is 4K in size (12-bit offset 212 bytes). Because the PTE is 4-bytes long and each level of the
page table has 1024 entries (i.e. 10-bit virtual page #), this means that each level of the page table is 4K
in size, i.e. exactly the same size as a page. Thus the configuration is “magic” because every level of the
page table takes exactly one page. This is helpful for an operating system because it allows the OS to
page out parts of the page table to disk.

Problem 6b[2pts]: Suppose you were interested in supporting more than 4GB (i.e 232 bytes) of
physical memory, while still supporting a 32-bit virtual address space. Further, suppose that you
wanted to stick with 4-byte PTEs with the same hardware-defined page control and status bits as
defined above. What is the maximum amount of physical memory you could easily support? Explain.

Ignoring the Physical Page # bits, there are 8 access control bits above, from “Large Page” down to
“Valid” and 4 other bits that are either software defined or treated as 0. So, we could add up to 4 more
bits to the physical page #, yielding a maximum number of physical pages = 224 16 million entries. So,
with 4KB pages, our total physical memory would be: 224 212=236=64GiB

Problem 6c[2pts]: As discussed in lecture, the Translation Lookaside Buffer (TLB) caches
translations between virtual and physical page numbers. Without caching translations, each memory
operation would incur the overhead of a multi-level page-table access. For some processor
architectures, however, you must occasionally flush (invalidate) all of the TLB entries, even though
this will temporarily slow down the processor. Explain when and why we might need to do this:

We may have to flush out the TLB when we switch from one process to another in order to avoid incorrect
translation of virtual addresses to physical addresses. As a simple example, address “0” leads to a
different translation from process to process. Thus, when we switch we would need to make sure to flush
out any TLB entry that might map “0” to the old physical page for the old process. The same is true for
all other addresses.

Note: for processors that do not have a process ID in each TLB entry, we would have to always flush the
TLB when we switched processes. For processors that have a process ID in each TLB entry, we would
potentially have to flush the TLB when we reused the process ID (since it typically has a small and finite
number of bits). Consequently, the above answer is correct in both cases.

CS 162 Spring 2024 Midterm II SOLUTION March 14th, 2024

 Page 18/22

Problem 6d[2pts]: Consider a multi-level memory management scheme using the following format
for virtual addresses, including 2 bits worth of segment ID and an 8-bit virtual page number:

Virtual seg #
(2 bits)

Virtual Page #
(8 bits)

Offset
(8 bits)

Virtual addresses are translated into 16-bit physical addresses of the following form:

Physical Page #
(8 bits)

Offset
(8 bits)

Page table entries (PTE) are 16 bits in the following format, stored in big-endian form in memory
(i.e. the MSB is first byte in memory):

Physical Page #
(8 bits)

K
ernel

N
ocache

0 0

D
irty

U
se

W
riteable

V
alid

How big is a page in the above scheme? Explain.

Since the offset is 8 bits, a page is 28=256 bytes

Problem 6e[2pts]: In the above scheme, the top two bits of the address are used to select a segment.
If we were using an x86 processor, instead, where would the segment identifier come from?

The segment identifier comes from instruction opcode bits rather than the address.

Problem 6f[10pts]: Using the scheme from (6d) and the Segment Table and Physical Memory table
on the next page, state what will happen with the following loads and stores. Addresses below are
virtual, while base addresses in the segment table are physical. If you can translate the address, make
sure to place it in the “Physical Address” column; otherwise state “N/A”.

The return value for a load is an 8-bit data value or an error, while the return value for a store is
either “ok” or an error. If there is an error, say which error. Possibilities are: “bad segment” (invalid
segment), “segment overflow” (address outside segment), or “access violation” (page
invalid/attempt to write a read only page). A few answers are given:

Instruction
Translated

Physical Address
Result (return value)

Load [0x30115] 0x3115 0x57

Store [0x10345] 0x3145 Access violation

Store [0x30557] 0x3557 ok

Test&Set [0x11213] N/A segment overflow

Load [0x31202] 0xE002 0xAA

Store [0x31231] 0xE031 access violation

Load [0x01315] 0xF015 0x66

CS 162 Spring 2024 Midterm II SOLUTION March 14th, 2024

 Page 19/22

 Segment Table (Segment limit = 3)

Seg #
Page Table

Base
Max Pages
in Segment

Segment
State

0 0x2030 0x20 Valid
1 0x1020 0x10 Valid
2 0xF040 0x40 Invalid
3 0x4000 0x20 Valid

Physical Memory
Address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
0x0000 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D
0x0010 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D

….
0x1010 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
0x1020 40 03 41 01 30 01 31 01 00 03 00 00 00 00 00 00
0x1030 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF
0x1040 10 01 11 03 31 03 13 00 14 01 15 03 16 01 17 00

….
0x2030 10 01 11 00 12 03 67 03 11 03 00 00 00 00 00 00
0x2040 02 20 03 30 04 40 05 50 01 60 03 70 08 80 09 90
0x2050 10 00 31 01 F0 03 F0 01 12 03 30 00 10 00 10 01

….
0x3100 01 12 23 34 45 56 67 78 89 9A AB BC CD DE EF 00
0x3110 02 13 24 35 46 57 68 79 8A 9B AC BD CE DF F0 01
0x3120 03 01 25 36 47 58 69 7A 8B 9C AD BE CF E0 F1 02
0x3130 04 15 26 37 48 59 70 7B 8C 9D AE BF D0 E1 F2 03

….
0x4000 30 00 31 01 11 01 F0 03 34 01 35 07 43 38 32 79
0x4010 50 28 84 19 71 69 39 93 75 10 58 20 97 49 44 59
0x4020 23 03 20 03 E0 01 E1 08 E2 86 28 03 48 25 34 21

….
0xE000 AA 55 AA 55 AA 55 AA 55 AA 55 AA 55 AA 55 AA 55
0xE010 A5 5A A5 5A A5 5A A5 5A A5 5A A5 5A A5 5A A5 5A

….
0xF000 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF
0xF010 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF 00
0xF020 22 33 44 55 66 77 88 99 AA BB CC DD EE FF 00 11

….

CS 162 Spring 2024 Midterm II SOLUTION March 14th, 2024

 Page 20/22

[This Page Intentionally Left Blank]

CS 162 Spring 2024 Midterm II SOLUTION March 14th, 2024

 Page 21/22

[Scratch Page: Do not put answers here!]

CS 162 Spring 2024 Midterm II SOLUTION March 14th, 2024

 Page 22/22

[Scratch Page: Do not put answers here!]

