
 Page 1/24

University of California, Berkeley
College of Engineering

Computer Science Division  EECS
Spring 2023 Kubiatowicz

Midterm I
SOLUTION

February 16th, 2023
CS162: Operating Systems and Systems Programming

Your Name:

SID AND Autograder
Login (e.g. student042):

TA Name:

Discussion Section
Time:

General Information:
This is a closed book exam. You are allowed 1 page of notes (both sides). You have 110 minutes to
complete as much of the exam as possible. Make sure to read all of the questions first, as some of the
questions are substantially more time consuming.

Make your answers as concise as possible. On programming questions, we will be looking for
performance as well as correctness, so think through your answers carefully. If there is something
about the questions that you believe is open to interpretation, please ask us about it!

Problem Possible Score

1 20

2 16

3 16

4 20

5 28

Total 100

CS 162 Spring 2023 Midterm I SOLUTION February 16th, 2023

 Page 2/24

[This page left for ]

3.14159265358979323846264338327950288419716939937510582097494459230781640628620899

CS 162 Spring 2023 Midterm I SOLUTION February 16th, 2023

 Page 3/24

Problem 1: True/False [20 pts]
Please EXPLAIN your answer in TWO SENTENCES OR LESS (Answers longer than this may not
get credit!). Also, answers without an explanation GET NO CREDIT.

Problem 1a[2pts]: One process can have two different file descriptors (in the process’s file descriptor
table) that point to the same open file description structure in the kernel.

 True ⬜ False
Explain: The dup() system call will take a file descriptor for an open file and return a
new file descriptor that is pointing at the same file description as the original.

Problem 1b[2pts]: The up/down functions of a semaphore initialized with value 1 will always
exhibit identical behavior to the release/acquire functions of a lock. (Assume that the lock enforces
that a thread cannot release the lock unless it has already acquired it.)

 ⬜ True False
Explain: While we can build a mutex with a semaphore which will work to enforce a
critical section similar to a lock, it has the behavior that a thread can execute an “up” at any
time, including when the mutex is not taken (i.e. the semaphore’s value is “1”). As a result,
the semaphore could  2, allowing two threads to enter a critical section at once.

Problem 1c[2pts]: The following code will print “7”, assuming that fork() never fails:

void main(int argc, char **argv) {
 int count = 0;
 pid_t main_process_pid = getpid();
 for (int i = 0; i < 3; i++) {
 if (fork() == 0) count++;
 else wait(NULL);
 }
 if (getpid() == main_process_pid)
 printf("%d\n", count);
}

 ⬜ True  False
Explain: Because this code is forking new processes, the “count” variable is not
shared across processes. Since the original main (parent) process never increments count
and is the only process to print, the output will be “0”.

Problem 1d[2pts]: A thread cannot be blocked on multiple condition variables simultaneously.

  True ⬜ False
Explain: Since the interface to wait() take a single condition variable at a time, it is
not possible to be blocked on two condition variables simultaneous: after blocking on the first,
the thread will be unable to block on the second until after it is unblocked on the first (it won’t
be able to execute the second wait while sleeping because of the first wait).

CS 162 Spring 2023 Midterm I SOLUTION February 16th, 2023

 Page 4/24

Problem 1e[2pts]: Threads within the same process can share data (since they live in the same
address space), but threads in different processes cannot share data.

⬜ True  False
Explain: Threads in different processes can share data by (1) setting up shared
memory between them, (2) sharing a pipe, file, or socket between them, (3) using signals.

Problem 1f[2pts]: There are situations where disabling interrupts must be used as opposed to other
synchronization primitives.

 True ⬜ False
Explain: Examples (only need one) include (1) in the middle of the context switch
code, an interrupt might result in a second context switch interleaved with the first that would
leave inconsistent thread state. (2) During an interrupt handler, another interrupt of the same
type could result in inconsistent modifications to internal device-structures.

Problem 1g[2pts]: The use of sockets with TCP/IP is limited to providing a single unique
connection between each physical client and physical server.

⬜ True  False
Explain: It is possible to have many unique connections between the same two physical
machines just by varying the ports at the source and/or destination, since connections are
uniquely defined by a 5-tuple of Source IP & Port, Destination IP & Port, and Protocol.

Problem 1h[2pts]: System calls are achieved by library code (for instance, in libc) that first
changes the processor mode from user mode to kernel mode (using one of the “switch processor
mode” instructions), then makes an explicit call to a handler function in the kernel.

⬜ True  False
Explain: To execute a system call, the library puts the desired system call number into
a predetermined register, then executes a special trap instruction that atomically changes to
kernel mode, switches to the kernel stack, saves user registers, and executes a system call
handler that is looked up from the instruction vector table.

Problem 1i[2pts]: Suppose you write a multithreaded program that generates 1000 different
threads to all read data within a shared array. To make sure that there are no race conditions
between these threads, you must implement a synchronization method.

⬜ True  False
Explain: Since all the threads are reading, there are no race conditions or need for
synchronization.

Problem 1j[2pts]: In Pintos, a child process’s state (running status, exit code, etc) can never be
freed until its parent process terminates.

⬜ True  False
Explain: Once the child has exited, the child’s state can be freed by the parent by
calling one of the variants of the wait() system call. The parent does not need to exit.

CS 162 Spring 2023 Midterm I SOLUTION February 16th, 2023

 Page 5/24

Problem 2: Multiple Choice [16pts]
Problem 2a[2pts]: Select all true statements about processes (choose all that apply):
A:  When a new process is created it must be initialized with a new virtual address space.

B: ⬜ The PCB must be located in user memory for the user program to access the virtual address
to physical address translation scheme (e.g., the base/bound or page directory).

C: ⬜ When a parent process exits, all child processes must also immediately exit.

D:  Immediately after fork completes, if a parent process and its new child process perform a
read at the same virtual address they may end up reading from the same physical memory.

E: ⬜ None of the above.

A: TRUE. Each process has its own unique mapping from virtual addresses to physical ones.

B: FALSE. (1) The virtual address to physical address mapping is put into hardware by the
kernel, so the user program just accesses addresses using the normal hardware mechanism.
(2) the PCB is in kernel memory.

C: FALSE. Child processes can continue running after parent exits – control of these
processes is inherited by the grandparent process.

D: TRUE. One of the ways of reducing the cost of a fork() is to only copy the page tables of
the parent, not the contents of memory. All page table entries are marked as read-only so
that if either parent or child makes changes to a shared physical page, it gets copied so that
each of them has their own (independent) copy of that page. (This is called Copy on Write).

E: FALSE. Obviously.

Problem 2b[2pts]:

Select all true statements about monitors (choose all that apply):

A:  A monitor consists of a lock and zero or more conditional variables.

B:  The cond_wait() function (internally) releases the monitor lock and puts the thread to
sleep until the cond_signal() or cond_broadcast() function has been called.

C:  In a system with Mesa semantics, there is no guarantee that a signaled condition will still
be true when the signaled (and awoken) thread gets around to checking the condition.

D: ⬜ Monitors cannot be implemented with only semaphores.

E: ⬜ None of the above.

A: TRUE. We gave this definition in class (although the zero CV case is degenerate).

B: TRUE. This statement must be true in order to avoid deadlock (otherwise a thread would
sleep while the monitor lock was held, preventing any further progress). It is just that the
programmer thinks of going to sleep with the lock—the implementation takes care of it.

C: TRUE. As discussed in class, with Mesa semantics, the “signal” call only puts a sleeping
thread back on the ready queue and continues. By the time the signaled thread gets to use
the CPU, some other thread may have run and made the condition false again.

D: FALSE. Monitors can, indeed, be implemented with semaphores. The only tricky part of
this is implementing the condition variable (releasing the lock before sleeping during
cond_wait and reacquiring afterwards, and only incrementing the CV semaphore if
someone is actually sleeping – using an extra counter modified with the lock held).

E: FALSE. Obviously

CS 162 Spring 2023 Midterm I SOLUTION February 16th, 2023

 Page 6/24

Problem 2c[2pts]: Select all of the following that are true of the stack of a PintOS user program
(choose all that apply):
A:  When pushing argv to the user stack, the values of the arguments are pushed before the

pointers to those values.

B: ⬜ During context switching, all FPU and thread registers are saved to the user stack.

C:  The user stack pointer starts at the virtual address PHYS_BASE and is decremented to make
space for arguments, local variables, etc.

D: ⬜ The user stack and the kernel stack for a given process are located on the same page in
physical memory.

E:  A user program can successfully execute the assembly instruction mov 0xc0000008, esp
(ignore any issues that may occur in following instructions).

A: TRUE. This ordering is correct, since the argv array is an argument to main, but the
values are not (so must be pushed on the stack before the actual arguments to main).

B: FALSE. Context switching occurs at the heart of the kernel scheduler, so saving of registers
would occur within the kernel, either in the TCB or on the kernel stack.

C: TRUE. Both the initial position and the fact that pushing items on the stack causes the
stack pointer to decrement.

D: FALSE. In general, the user stack is in the address space of a process while the kernel
stack is in kernel space. Since these stacks are in different address spaces, they must be in
different pages (address space mapping is typically done per page).

E: TRUE. This instruction does nothing more than load an address into the stack pointer.
The fact that this address mapped in a way that is only available in kernel mode wouldn’t
be a problem until you tried to actually read or write from that address (i.e. with a push or
pop).

Problem 2d[2pts]: In Pintos, every user-level thread has both a user-level stack and a kernel-level
stack. The kernel stack is sometimes called a “kernel thread” because it manipulated by the
scheduler when multiplexing the CPU. What is true about this arrangement (choose all that apply):

A: ⬜ The physical memory for the kernel stack must be at a lower address than the physical
memory for the user stack so that the stacks can be considered together (treating a system
call like a procedure call into the kernel).

B:  The kernel gains safety because it does not have to rely on the correctness of the user’s stack
pointer register or validity of user’s stack memory for correct behavior.

C: ⬜ While the thread is executing within the kernel, it has access to an arbitrarily large stack,
allowing deeply recursive handling of the scheduling algorithm.

D:  Threads which run exclusively within the kernel (and have no associated user-level stack)
can be scheduled by the same scheduler as regular (user) threads.

E:  When the user-thread makes a system call, the thread can be blocked at any time (and at any
call depth within the kernel) by saving current state on the kernel stack and/or TCB, putting
the kernel stack on a wait queue, and restoring state from another kernel stack linked into
the ready queue.

CS 162 Spring 2023 Midterm I SOLUTION February 16th, 2023

 Page 7/24

A: FALSE. The user and kernel stacks are separate and disconnected from one another.
Further, the addresses of the stacks are virtual and mapped to arbitrary physical pages.

B: TRUE. Entry into the kernel (e.g. during system calls, interrupts, traps, etc) involves an
automatic replacement of the user stack with a pre-allocated kernel stack.

C: FALSE. Kernel stacks are typically limited in size, since kernel routines are not deeply
recursive. As a case in point, PintOS kernel stacks are < 4KB. Linux kernel stacks < 8KB.

D: TRUE. Normal user threads must enter the kernel and save their information on their
paired kernel stack before they can be scheduled. Kernel-only threads operate exclusively
on a kernel stack. Consequently, the scheduler performs a context switch by dealing only
with kernel stacks – thus, it can view all threads as identical.

E: TRUE. Any time a user thread enters the kernel, it will save the user-level information on
the kernel stack and can then continue using the kernel stack. Since the context-switch
process process operates with kernel stacks, suspending a thread simply by putting its kernel
stack on a wait queue.

Problem 2e[2pts]: What are some things that can cause a transfer from user mode to kernel mode?
(choose all that apply):

A:  User code divides by zero.

B:  The user executes fib(0x20000000) with a recursive implementation of fib(). Here,
fib(n) computes the nth Fibonacci number.

C:  A packet is received from the network

D:  The application uses malloc() to allocate memory from the heap.

E:  The timer goes off.

A: TRUE. Integer divide by zero causes a divide by zero trap and enters the kernel through
the appropriate entry in the interrupt vector.

B: TRUE. Because the fib() routine does a recursive implementation of fib(), the
fib(0x2000000) will use a huge amount of stack space, causing multiple traps (page faults)
into the kernel in order to get more physical memory mapped to the part of the user’s virtual
address space as the stack keeps growing.

C: TRUE. Reception of packets from the network can generate interrupts, which will force a
transition from user mode to kernel mode to handle the incoming packets..

D: TRUE. Calls to malloc() allocate data on the heap, which can enter the kernel to ask for
more memory (via the sbrk system call0 to be assigned to the part of the address space
assigned to the heap..

E: TRUE. The timer generates an interrupt which causes a transition from user mode to
kernel mode.

CS 162 Spring 2023 Midterm I SOLUTION February 16th, 2023

 Page 8/24

Problem 2f[2pts]: Kernel mode differs from User mode in the following ways (choose all that
apply):

A:  The CPL (current processor level) is 0 in kernel mode and 3 in user mode for Intel processors

B:  In Kernel mode, additional instructions become available, such as those that modify page
table registers and those that enable/disable interrupts.

C: ⬜ Specialized instructions for security-related operations (such as for cryptographic
signatures) are only available from Kernel mode.

D:  Control for I/O devices (such as the timer, or disk controllers) are only available from kernel
mode

E:  Pages marked as Kernel-mode in the PTEs are only available in kernel mode.

A: TRUE. The x86 family of processors has 4 processor levels from the highest (0)
representing the greatest privilege to the lowest (3) representing the least privilege. These
two levels are typically used for kernel mode and user mode respectively.

B: TRUE. There are instructions that the hardware allows only in kernel mode.

C: FALSE. Cryptographic operations are most frequently used by user applications, so it
wouldn’t make sense to restrict them to kernel mode.

D: TRUE. Access to I/O devices is through (1) special I/O instructions that are, by default,
only available in kernel mode or (2) parts of the physical address space that are typically
available only in kernel mode.

E: TRUE. This is what the kernel-mode PTE bit means.

Problem 2g[2pts]: Consider the following pseudocode implementation of a lock_acquire().

lock_acquire() {
 interrupt_disable();
 if (value == BUSY) {
 put thread on wait queue;
 Go to sleep();
 } else {
 value = BUSY;
 }
 interrupt_enable();
}

Which of the following are TRUE? Assume we are running on a uniprocessor/single-core machine.
(choose all that apply):
A:  It is possible to build a system with two independent (separate) locks even though there is

only one global interrupt_disable() bit.

B: ⬜ The wait queue being referenced here must keep threads in FIFO order in order to provide
a correct locking implementation.

C:  For this implementation to be correct, sleep() should trigger the scheduler which will
reenable interrupts as part of running the next thread.

D:  It is possible for a lock built this way to be exploited by user code.

E: ⬜ None of the above.

CS 162 Spring 2023 Midterm I SOLUTION February 16th, 2023

 Page 9/24

A: TRUE. Instead of just the single “value” memory location, you can pass an address to
one of many different integer locations – each of which acts as an independent lock.

B: FALSE. The basic locking API has no constraints ordering or implementation of the wait
queue, merely that threads wait by sleeping.

C: TRUE. As discussed, this implementation disables interrupts with the assumption that they
will be reenabled as part of putting thread to sleep and waking up a different thread.

D: TRUE. Although this implementation disables interrupts (which can only be done in
kernel mode), the lock itself could be accessed from user code through a system call (in fact,
futex has this very behavior).

E: FALSE. Obviously

Problem 2h[2pts]: Which of the following are true about semaphores (choose all that apply):

A: ⬜ Semaphores can be initialized to any 32-bit values in the range -231 to 231-1

B: ⍰ Semaphore.V() increments the value of the semaphore and wakes a sleeping thread if the
value of the semaphore is > 0. ᾼ

C:  Semaphores can be implemented with Monitors (using one condition variable per
Semaphore).

D: ⬜ The interface for Semaphore.P() is specified in a way that prevents its implementation
from busywaiting, even for a brief period of time.

E:  The pure semaphore interface does not allow querying for the current value of the
semaphore.

A: FALSE. Semaphores cannot have a negative value (must be initialized to a value  0.

B: BOTH. We accepted both TRUE and FALSE for this one. It is true that, Semaphore.V()
will wake a sleeping thread if the value is > 0 after incrementing under some circumstances.
That would argue for “TRUE”. However, Semaphore.V() will only wake a sleeping thread
if there is one that is sleeping. Further, only threads that increment the semaphore from 0
to 1 will even try to look for sleeping threads. These would argue for “FALSE.”

C: TRUE. This is particularly simple – use one lock, one CV (for the wait queue), and one
integer to represent the value of the semaphore.

D: FALSE. The API says nothing about implementation. It just says that a thread that tries to
do a Semaphore.P() when the semaphore is equal to zero will have to wait. Of course, a
good implementation would avoid busywaiting.

E: TRUE. The pure version of the semaphore interface does not allow querying of the value
of the semaphore (even though some implementations do allow you to look). In general,
being able to look at the value of the semaphore is not terribly helpful, because it may be
changing due to concurrency.

CS 162 Spring 2023 Midterm I SOLUTION February 16th, 2023

 Page 10/24

Problem 3: Cat-Dog Lock [16pts]
A cat-dog lock is a sort of generalized reader-writer lock: in a reader-writer lock there can be any
number of readers or a single writer (but not both readers and writers at the same time), while in a
cat-dog lock there can be any number of cats or any number of dogs (but not both a cat and a dog at
the same time). Assume that we are going to implement this lock at user level utilizing pthread
monitors (i.e pthread mutexes and condition variables). Note that the assumption here is that we will
put threads to sleep when they attempt to acquire the lock as a Cat when it is already acquired by one
or more Dogs and vice-versa.

You must implement the behavior using condition variable(s). Assume that the system provides MESA
semantics. Points will be deducted for any spin-waiting behavior.

Some snippets from POSIX Thread manual pages showing function signatures are shown at end of
this exam. They may or may not be useful.

Our first take at this lock is going to utilize the following structure and enumeration type:

 /* The basic structure of a cat‐dog lock */
 struct cdlock {
 pthread_mutex_t lock;
 pthread_cond_t wait_var;

 // Simple state variable
 int state; // (<0) => CATS, 0 => FREE, (>0) => DOGS
 };

 /* Enumeration to indicate type of requested lock */
 enum cdlock_type { CDLOCK_CAT, CDLOCK_DOG };

 /* interface functions: return 0 on success, error code on failure */
 int cdlock_init(struct cdlock *lock);
 int cdlock_lock(struct cdlock *lock, enum cdlock_type type);
 int cdlock_unlock(struct cdlock *lock);

Note that the lock requestor specifies the type of lock that they want at the time that they make the
request:

 /* Request a Cat lock */
 if (cdlock_lock(mylock, CDLOCK_CAT) {
 printf(“Lock request failed!”);
 exit(1);
 }
 /* . . . Code using lock . . . */

 /* Release your lock */
 cdlock_unlock(mylock);

CS 162 Spring 2023 Midterm I SOLUTION February 16th, 2023

 Page 11/24

Problem 3a[3pts]: Complete the following sketch for the initialization function. Note that
initialization should return zero on success and a non-zero error code on failure (e.g. return the failure
code, if you encounter one, from the various synchronization functions). Hint: the state of the lock is
more than just “acquired” or “free”. This must be done in five (5) or less lines (can be done in 4).
 /* Initialize the CD lock.
 * Args: pointer to a cdlock
 * Returns: 0 (success)
 * non-zero (errno code from synchronization functions)
 */
 int cdlock_init(struct cdlock *lock) {
 int errcode; // For error values

 lock->state = 0; // no lock holders of any time

 if (errcode = pthread_mutex_init(&(lock->lock), NULL)))
 return errcode;

 return (pthread_cond_init(&lock->wait_var);

 }

Problem 3b[4pts]: Complete the following sketch for the lock function. Think carefully about the
state of the lock; when you should wait, when you can grab the lock. Also think about what is required
to handle unlock later. Return a failure code from underlying pthread functions if they occur. Hint:
accumulate count of compatible types. This must be done in nine (9) or less lines (can be done in 7).

 /* Grab a CD lock.
 * Args: (pointer to a cdlock, enum lock type)
 * Returns: 0 (lock acquired)
 * non-zero (errno code from synchronization functions)
 */
 int cdlock_lock(struct cdlock *lock, enum cdlock_type type) {
 int errcode; // For error values

 // Get direction for accumulating lock holders
 int dir = (type == CDLOCK_CAT)?-1:1;

 if (errcode = pthread_mutex_lock(&(lock->lock)))
 return errcode;

 while (lock->state * dir < 0) // incompatible thread have lock!
 if (errcode=pthread_cond_wait(&(lock->wait_var),&(lock->lock)))
 return errcode;

 lock->state += dir; // register new bglock holder of this type

 return (pthread_mutex_unlock(&(lock->lock)));

 }

CS 162 Spring 2023 Midterm I SOLUTION February 16th, 2023

 Page 12/24

Problem 3c[4pts]: Complete the following sketch for the unlock function. Be sure to return an error
code from the underlying synchronization functions if they occur. This must be done in nine (9) or
less lines (can be done in 7).

 /* Release a CD lock.
 * Args: pointer to a cdlock
 * Returns: 0 (lock acquired)
 * non-zero (errno code from synchronization functions)
 */
 int cdlock_unlock(struct cdlock *lock) {
 int errcode; // For error values

 if (errcode = pthread_mutex_lock(&(lock->lock)))
 return errcode;

 // Remove one lockholder of current type
 lock->state -= (lock->state > 0)? 1 : -1;

 // Returning to neutral state – wake up sleepers!
 if (lock->state == 0)
 if (errcode = pthread_cond_broadcast(&(lock->wait_var)))
 return errcode;

 return (pthread_mutex_unlock(&(lock->lock)));

 }

Problem 3d[2pts]: Consider a group of “nearly” simultaneous arrivals (i.e. they arrive in a period
much quicker than the time for any one thread that has successfully acquired the Cdlock to get around
to performing cdlock_unlock()). Assume that they enter the cdlock_lock()routine in this
order:

C1, D1, C2, D2, C3, C4, C5, D3, D4, C6, C7, C8, D5

How will they be grouped? (Place braces, namely “{}” around requests that will hold the lock
simultaneously). This simple lock implementation (with a single state variable) is subject to
starvation. Explain. Note that we are asking for 2 separate things in this problem—the grouping and
the explanation about starvation.

Since the first thread to arrive is a Cat, then all of the subsequent cats will get to run and the
Dogs will be put to sleep on the condition variable queue until the Cats complete, i.e. scheduling
order is:

{ C1, C2, C3, C4, C5, C6, C7, C8 }, { D1, D2, D3, D4, D5 }

This lock is subject to starvation because one class of threads (say Dog threads) could be held
off from executing arbitrarily for as long as new Cat threads arrive. We would say that the Dog
threads are starved from executing.

CS 162 Spring 2023 Midterm I SOLUTION February 16th, 2023

 Page 13/24

Problem 3e[3pts]: Suppose that we want to enforce fairness, such that Cat and Dog requests are
divided into phases based on arrival time into the cdlock_lock() routine. Thus, for instance, an
arrival stream of Cats and Dogs such as this:

C1, C2, D1, D2, D3, D4, C3, D5, C4, C5

will get granted in groups such as this:

{C1, C2}, {D1, D2, D3, D4}, {C3}, {D5}, {C4, C5}

To do this, we will enhance our cdlock structure like this:

 /* The basic structure of a cat‐dog lock */
 #define MAX_SIMU_GROUPS 20
 struct cdlock {
 pthread_mutex_t lock;
 pthread_cond_t wait_var;

 int head,tail;
 int state[MAX_SIMU_GROUPS]; // (<0) => CATS, 0 => FREE, (>0) => DOGS
 };

In 3 sentences or less, explain how this change will allow the CD lock to enforce fairness. Hint:
Explain (at a high level, without code) how this would change cdlock_lock():.

We have replaced the single state variable with a circular queue of state variables, with the
number and type of currently executing threads indicated by the state variable at the head of the
queue (i.e. state[head]). For cdlock_lock, we check to see if the new thread is incompatible with
the state at the tail of the queue (which could be == head if the queue has only one type of threads
being tracked); if so, we increment tail (mod MAX_SIMU_GROUPS) and start a new group/put
ourselves to sleep, checking each time we awake to see if our new tail pointer has become the
head. Ignoring the edge case of a full queue, this technique avoids starvation because threads
are grouped into strings of identical types of threads and will be woken up in sequence, with no
new threads being able to go before old ones.

CS 162 Spring 2023 Midterm I SOLUTION February 16th, 2023

 Page 14/24

Problem 4: Short Answer Potpourri [20 pts]

For the following questions, provide a concise answer of NO MORE THAN 2 SENTENCES per
sub-question (or per question mark).

Problem 4a[3pts]: How does the OS prevent malicious user programs from executing arbitrary
code in kernel mode or from accessing other programs’ memory? Name 3 mechanisms
(limit 1 sentence per mechanism):

There are a number of possible answers here. For instance: (1) Each user process has a
separate address space that is mapped to unique physical memory, thereby making it impossible
for a malicious user program from reading or writing to memory from the kernel or other
processes. (2) System calls into the kernel go through an explicit system call vector, so that all
user-initiated entry to the kernel goes through preauthorized entry points that check all
arguments for validity. (3) Dual-mode execution (in which the processor has a different
hardware mode for system vs user mode means that the OS can protect the virtual memory
mappings from modification in user mode. (4) file system protections enforced by the kernel
prevent the user from modifying the kernel binary or SUID root programs and thereby gaining
unauthorized access to user or kernel data.

Problem 4b[4pts]: Explain the key difference between the low-level and high-level file APIs in C
as discussed in lecture. Give an example in which the low-level API would be faster than the high-
level API and give an example in which the high-level API would be faster than the low-level API
(limit 1 sentence per example):

The difference between low-level and high-level APIs is that the low-level APIs (open, close,
read, write) involve direct use of the file system calls, while the high-level APIs (fopen, fclose,
fread, fwrite) go through user-level buffering.

The high-level (buffered) API can be much faster if your user program does a lot of reads or
writes involving a small number of bytes: because of the user-level buffer, the system will only
need to perform expensive system calls every so often.

Low-level APIs can be faster if the user program is already reading or writing big chunks of
data so that the overhead of system calls is not as big a fraction of the execution time as is the
double-copying of data from kernel  user-level buffer in streaming library  user buffer in
application.

Problem 4c[3pts]: What are some of the hardware enforced differences between kernel mode and
user mode? Name three:

There are a number of answers. Here are a few: (1) The CPL (current programming level) is 0
for system mode and 3 for user mode on Intel processors. (2) User code is not allowed to access
virtual addresses marked as kernel-only in page table (3) User mode is not allowed to change
the page-table base pointer register. (4) User mode is not allowed to alter the interrupt state or
mask (can’t enable/disable interrupts). (5) User mode is not allowed to change processor
execution modes (such as 32-bit vs 64-bit, etc).

CS 162 Spring 2023 Midterm I SOLUTION February 16th, 2023

 Page 15/24

For problems 4d, 4e, and 4f, consider the following sketch of the code for a network server. This
server communicates with clients running on other machines using the socket abstraction. To
handle requests from clients, the server follows four steps:

 server {
(1): int lsock = socket(…)
(2): bind(lsock,…)
(3): listen(lsock,…)
 while (true) {
(4): int conn = accept(lsock,…);
 If (conn < 0) break;
(5): handle_request(conn);
 }
 }

Problem 4d[2pts]: The accept() system call in step (4) returns an integer. What does this
integer represent (be explicit) and why does the code include an infinite while loop to keep
executing accept() over and over?

This integer is a file descriptor that points to a file description for a socket that is connected
with a remote client; it is generated from a connection request to the address and port that was
bound in line (2) and listened for in (3). The while loop is there to accept each new connection;
without it, this code would accept a single connection, then exit.

Problem 4e[2pts]: At step (5), above, the server can either directly handle the incoming request, or
it can create a new thread or process to handle the connection. Assuming that the server has only a
single core with no hyperthreading, explain why it might make sense to create concurrency (i.e.
either a thread or a process):

Even if there is only a single processor/core, it would still make sense to allow each incoming
connection to receive its own process or thread in order to allow overlapping of computation
and I/O. For instance, one connection could be blocked waiting for disk I/O while another was
being processed from a cache. The result would speed everything up.

Problem 4f[2pts]: Assuming the concurrency option of (Problem 4e) has been chosen, provide
one advantage for why the server should create a new process to handle the request and one
advantage for why the server should create a new thread to handle the new request instead.
[Single sentence per advantage]:

The advantage of creating a new process per connection is that primary (spawning) code of the
server could be protected from the code processing the connection (i.e. the handle_request()
procedure), i.e. it is more secure. The advantage of creating a new thread per connection is
that the result is much faster and lower overhead than creating a new process, because thread
creation is much cheaper than thread creation.

CS 162 Spring 2023 Midterm I SOLUTION February 16th, 2023

 Page 16/24

Problem 4g[4pts]: In the following code, add global variables/locks and/or synchronization
functions so that it is guaranteed to print:

B
A
C

You do not need to use every line, but you may only put one statement per line (no comma
expressions) and only declare global variables or synchronization functions. Use the pintos
semaphore interface in the following. Assume that any necessary include files have been included.

 1. struct semaphore sema1;
 2. struct semaphore sema2;

 3. void* A(void* aux) {

 4. _sema_down(&sema1);______________________________________
 5. printf("A\n");

 6. _sema_up(&sema2);__
 7. return(NULL);
 8. }

 9. void* B(void* aux) {

 10. ___
 11. printf("B\n");

 12. _sema_up(&sema1);__
 13. return(NULL);
 14. }

 15. void* C(void* aux) {

 16. _sema_down(&sema2);______________________________________
 17. printf("C\n");

 18. ___
 19. return(NULL);
 17. }

 18. int main() {

 19. _sema_init(&sema1, 0);___________________________________

 20. _sema_init(&sema2, 0);___________________________________
 21. pthread_t tid;
 22. pthread_create(&tid, NULL, A, NULL);
 23. pthread_create(&tid, NULL, B, NULL);
 24. pthread_create(&tid, NULL, C, NULL);
 25. pthread_exit(NULL);
 26. }

CS 162 Spring 2023 Midterm I SOLUTION February 16th, 2023

 Page 17/24

Problem 5: Futex Implementation[28pts]
In lecture, we introduced the Linux futex() system call, short for “fast userspace mutex”. In this
problem, you will implement a portion of a simplified version of the futex().

The function signature for our simplified futex syscall is as follows:

int futex(int *uaddr, int futex_op, int val) {
 /* uaddr: a pointer to an int in user space.
 futex_op: a code indicating which futex operation to perform
 (e.g. FUTEX_WAIT or FUTEX_WAKE).
 val: a value that is compared against *uaddr.
 */
}

Normally, this system call is buried in libc and used to implement various locking primitives such
as locks, semaphores, and monitors. While the full version of futex() defines a number of futex_op
values, we will focus on only two of them:

1. For FUTEX_WAIT, if *uaddr == val, the calling thread will go to sleep. The loading of
the value stored at uaddr, the comparison of that value with val, and the blocking of the
thread will happen atomically. After waking up, the calling thread will return 0. If, instead,
*uaddr != val, the function will return immediately with a return value of -1.

2. For FUTEX_WAKE, this function will wake up to val waiting threads. You can assume in this
problem that val will always be <= the actual number of waiting threads.

Consequently, futex() provides a unique sleep queue in the kernel associated with each uaddr.

Problem 5a[2pts]: In lecture, we showed one possible implementation of a user-level lock using
the futex() system call as a primitive. It looked like this:

acquire(int *thelock) {
 while (test&set(thelock)) {
 futex(thelock, FUTEX_WAIT, 1);
 }
}

release(int *thelock) {
 *thelock = 0;
 futex(thelock, FUTEX_WAKE, 1);
}

In two sentences or less, explain why this implementation does no busy waiting, despite the
presence of a while() loop in acquire():

Each loop of the while() calls futex(), which puts the thread to sleep. Consequently, the waiting
is accomplished via sleep() rather than spinning.

Problem 5b[2pts]: In two sentences or less, explain (1) why this implementation does not allow an
uncontested lock (one primarily used by one thread at a time with occasional collisions) to be
acquired and released quickly entirely at user level (without entering the kernel) and (2) how we
suggested fixing this problem in lecture:

Because every release() operation calls futex() (i.e. entering the kernel), it is not possible for a
user-level thread that is not competing with other threads to call acquire() and release() without
entering the kernel at least once. In lecture, we suggested adding an extra state variable
(maybe_sleeping) to track when there might be a thread sleeping in the kernel, thus allowing
the uncontested example to proceed with no kernel transitions.

CS 162 Spring 2023 Midterm I SOLUTION February 16th, 2023

 Page 18/24

Problem 5c[7pts]: Since futex() asssociates a sleep queue with each unique integer address (first
argument), we can build semaphores very simply: a semaphore is literally a pointer to a memory
location holding an integer. Complete the following implementations for sema_down() and
sema_up() using futex() and compare-and-swap (CAS). Recall the following behavior for CAS:

 /* pseudocode for behavior of the atomic compare and swap instruction */
 bool CAS(int *addr, int expr1, int expr2) {
 if (*addr == expr1) {
 *addr = expr2;
 return true;
 } else {
 return false;
 }
 }

Only one expression per blank will be accepted (no semicolons or comma expressions). Keep in
mind that an expression of the form (a = b) does two things in “C”. (1) It assigns the value of
b to the variable a and (2) it returns the value of b. Thus, (a = b) == c is a valid expression.

Hint: don’t forget that the implementation must work (be atomic) with multiple simultaneous
assertions of sema_down() and sema_up(). Further note that most interesting transitions
happen around 0.

 1. sema_down(int *the_sema) {
 2. int curvalue;
 3. do {

 4. while (__!(curvalue = *thesema)__________________________) {

 5. futex(the_sema, _FUTEX_WAIT________, __0__________________);
 6. }

 7. } while (!CAS(the_sema, _curvalue__________, _curvalue‐1_________));
 8. }

 9. sema_up(int *the_sema) {
 10. int curvalue;
 11. do {

 12. __curvalue = *thesema___________________;

 13. } while (!CAS(the_sema, __curvalue_________, ___curvalue+1_______));

 14. if (__curvalue == 0____________________________) {

 15. futex(the_sema, __FUTEX_WAKE_______, __1__________________);
 16. }
 17. }

CS 162 Spring 2023 Midterm I SOLUTION February 16th, 2023

 Page 19/24

Problem 5d[8pts]: Inside the kernel, the futex() implementation must provide a wait queue for
each unique address (uaddr) passed to futex(). We represent each wait queue as follows:

 typedef struct futex {
 struct condition cond; /* queue of waiting threads */
 struct lock lock;
 int *uaddr;
 struct list_elem elem;
 } futex_t;

Fill in the blanks to produce the helper function that gets a futex object associated with a given
uaddr. As before, only one expression per blank, no semicolons or comma expressions:

 1. struct list futex_list; // Global list used by the kernel
 2. struct lock futex_list_lock;
 3. /* Called when kernel boots up. */
 4. void init() {
 5. list_init(&futex_list);
 6. lock_init(&futex_list_lock);
 7. }

 8. /* Our target helper function */
 8. futex_t *get_futex(int* uaddr) {
 9. struct list_elem* e;
 10. futex_t* f;
 11. bool found = false;

 12. _lock_acquire(&futex_list_lock)______________________________;

 12. for (e = _list_begin(&futex_list)___; _e != list_end(&futex_list)__;
 13. e = list_next(e)) {

 14. _f = list_entry(e, struct futex, elem)____________________;

 15. if (__f‐>uaddr == uaddr___________________________________) {
 16. found = true;
 17. break;
 18. }
 19. }
 20. if (!found) {
 21. f = (futex_t*)malloc(sizeof(futex_t));

 22. _cond_init(&(f‐>cond))____________________________________;

 23. _lock_init(&(f‐>lock))____________________________________;

 24. _f‐>uaddr = uaddr___;
 25. list_push_front(&futex_list, &f‐>elem);
 26. }
 27. _lock_release(&futex_list_lock)______________________________;
 28. return f;
 29. }

CS 162 Spring 2023 Midterm I SOLUTION February 16th, 2023

 Page 20/24

Problem 5e[9pts]: Finally, implement the futex() system call. Don’t forget that it is called from
user space an must be properly validated. As before, provide only one expression per blank, no
semicolons or comma expressions:

 1. // Checks to see if pointer is within the memory address space.
 2. // Terminates the current program if not; no need to return
 3. void validate_pointer(char* pointer);

 4. // This function called by syscall handler after user calls futex()
 5. int syscall_futex(int* uaddr, int futex_op, int val) {

 6. __validate_pointer((char*)uaddr)_____________________________;

 7. futex_t* f = _get_futex(uaddr)_______________________________;
 8. if (futex_op == FUTEX_WAIT) {
 9. enum intr_level old_level;
 10. old_level = intr_disable();

 11. if (_*uaddr == val__) {

 12. _lock_acquire(&(f‐>lock))______________________________;

 13. _cond_wait(&(f‐>cond),&(f‐>lock))______________________;

 14. _lock_release(&(f‐>lock))_______________________________;
 15. intr_set_level(old_level);
 16. return 0;
 17. } else {

 18. _intr_set_level(old_level)_____________________________;
 19. return ‐1;
 20. }
 21. } else if (futex_op == FUTEX_WAKE) {
 22. int num_woken = 0;

 23. _lock_acquire(&(f‐>lock))_________________________________;
 24. while (num_woken < val) {

 25. _cond_signal(&(f‐>cond),&(f‐>lock))____________________;
 26. num_woken++;
 27. }

 28. _lock_release(&(f‐>lock))_________________________________;
 29. return 0;
 30. } else {
 31. // Remaining futex_ops elided for this problem
 32. }
 33. }

CS 162 Spring 2023 Midterm I SOLUTION February 16th, 2023

 Page 21/24

Function Reference Sheet
Feel free to remove this sheet during the exam

/* Process */
pid_t fork(void);
pid_t wait(int *status);
pid_t waitpid(pid_t pid, int *status, int options);
int execv(const char *path, char *const argv[]);

/* pthreads */
int pthread_create(pthread_t *thread, const pthread_attr_t *attr,

 void* (*start_routine (void *), void *arg);
int pthread_join(pthread_t thread, void **retval);
void pthread_exit(void *retval);

/* pthread Semaphore interface */
int sem_init(sem_t *sem, int pshared, unsigned int value);
int sem_wait(sem_t *sem); /* The p() or down() operation */
int sem_post(sem_t *sem); /* The v() or up() operation */

/* pthread Lock/mutex operations */
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr);
int pthread_mutex_destroy(pthread_mutex_t *mutex);
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

/* pthread Condition Variable */
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
int pthread_cond_init(pthread_cond_t *cond, const pthread_condattr_t *attr);
int pthread_cond_destroy(pthread_cond_t *cond);
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);

/* Pintos locks */
void lock_init(struct lock *lock);
void lock_acquire(struct lock *lock);
void lock_release(struct lock *lock);

/* Pintos semaphore interface */
void sema_init(struct semaphore *sema, unsigned value);
void sema_down(struct semaphore *sema);
void sema_up(struct semaphore *sema);

/* Pintos condition variables */
void cond_init(struct condition *cond);
void cond_wait(struct condition *cond, struct lock *lock);
void cond_signal(struct condition *cond, struct lock *lock);
void cond_broadcase(struct condition *cond, struct lock *lock);

CS 162 Spring 2023 Midterm I SOLUTION February 16th, 2023

 Page 22/24

/* Pintos Readers/Writers Locks */
void rw_lock_init(struct rw_lock*);
void rw_lock_acquire(struct rw_lock*, bool reader);
void rw_lock_release(struct rw_lock*, bool reader);

/* Pintos List */
void list_init(struct list *list);
struct list_elem *list_head(struct list *list);
struct list_elem *list_tail(struct list *list);
struct list_elem *list_begin(struct list *list);
struct list_elem *list_next(struct list_elem *elem);
struct list_elem *list_end(struct list *list);
struct list_elem *list_remove(struct list_elem *elem);
bool list_empty(struct list *list);
#define list_entry(LIST_ELEM, STRUCT, MEMBER) ...
void list_insert(struct list_elem *before, struct list_elem *elem);
void list_push_front(struct list *list, struct list_elem *elem);
void list_push_back(struct list *list, struct list_elem *elem);

/* Strings */
char *strcpy(char *dest, char *src);
char *strdup(char *src);

/* Interrupt enable/disable */
enum intr_level {};
enum intr_level intr_get_level(void)
enum intr_level intr_set_level(enum intr_level level)
enum intr_level intr_enable(void)
enum intr_level intr_disable(void)

/* High‐Level IO */
FILE *fopen(const char *pathname, const char *mode);
int fclose(FILE *stream);
size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);
size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream);
fprintf(FILE * restrict stream, const char * restrict format, ...);

/* Low‐Level IO */
int open(const char *pathname, int flags);
int close(int fd);
ssize_t read(int fd, void *buf, size_t count);
ssize_t write(int fd, const void *buf, size_t count);
off_t lseek(int fd, off_t offset, int whence);
int dup(int oldfd);
int dup2(int oldfd, int newfd);
int pipe(int pipefd[2]);
int close(int fd);

/* Socket */
int socket(int domain, int type, int protocol);
int bind(int sockfd, struct sockaddr *addr, socklen_t addrlen);
int listen(int sockfd, int backlog);
int accept(int sockfd, structure sockaddr *addr, socklen_t *addrlen);
int connect(int sockfd, struct sockaddr *addr, socklen_t addrlen);
ssize_t send(int sockfd, const void *buf, size_t len, int flags);

CS 162 Spring 2023 Midterm I SOLUTION February 16th, 2023

 Page 23/24

[Scratch Page: Do Not Put Answers Here]

CS 162 Spring 2023 Midterm I SOLUTION February 16th, 2023

 Page 24/24

[Scratch Page: Do Not Put Answers Here]

