
 Page 1/19

University of California, Berkeley
College of Engineering

Computer Science Division ⎯ EECS
Spring 2022 Joseph & Kubiatowicz

Midterm III
SOLUTION

April 28th, 2022
CS162: Operating Systems and Systems Programming

Your Name:

SID AND Autograder Login
(e.g., student042):

TA Name:

Discussion Section Time:

General Information:
This is a closed book exam. You are allowed 3 pages of notes (both sides). You may not use a
calculator. You have 110 minutes to complete as much of the exam as possible. Make sure to read all
of the questions first, as some of the questions are substantially more time consuming.
WRITE ALL OF YOUR ANSWERS IN YOUR ANSWER BOOK, NOT IN THIS BOOKLET!
Make your answers as concise as possible. On programming questions, we will be looking for
performance as well as correctness, so think through your answers carefully. If there is something
about the questions that you believe is open to interpretation, please ask us about it!

Problem Possible Score

1 20

2 18

3 29

4 16

5 17

Total 100

CS 162 Spring 2022 Midterm III April 28th, 2022

Page 2/19

[This page left for π]

3.14159265358979323846264338327950288419716939937510582097494459230781640628620899

CS 162 Spring 2022 Midterm III April 28th, 2022

Page 3/19

Problem 1: True/False and Why [20 pts]

Please EXPLAIN your answer in TWO SENTENCES OR LESS (Answers longer than this may not
get credit!). Also, answers without an explanation GET NO CREDIT.

Problem 1a[2pts]: Direct Memory Access (DMA) is “direct” because it accesses devices via
memory directly rather than processor instructions.

 ⬜ True ⬜ False
 Explain:
DMA is direct because it allows devices to communicate directly with memory without using the
CPU at all.

Problem 1b[2pts]: If we care about the performance of random accesses to files, it would be better
to have a file system with extent-based allocations as opposed to one with linked block-based
allocations.

 ⬜ True ⬜ False
 Explain:
With extent-based allocations, files are allocated in contiguous chunks, meaning in order to access
random parts of the file, you would just need to offset by the specified amount. With linked files, you
will need to traverse a linked list of blocks, which will take a time linear in the offset size.

Problem 1c[2pts]: For Project 3, read, write, and remove syscalls should not be supported on
directories since there are dedicated directory syscalls readdir, mkdir, and rmdir.

 ⬜ True ⬜ False
Explain:

remove should still be supported on directories. rmdir is not a supported syscall in Project 3.

Problem 1d[2pts]: For Project 3, a struct inode_disk filled fully with indirect pointers would
be a valid approach to support the maximum file size of 8 MiB.

 ⬜ True ⬜ False
 Explain:
While this is just enough to meet the maximum file size since 27 × 27 × 29 = 223 = 8 MiB, struct
inode_disk needs to store other metadata (e.g. length, magic number).

CS 162 Spring 2022 Midterm III April 28th, 2022

Page 4/19

Problem 1e[2pts]: A solution to the General’s Paradox is sending large numbers (100’s) of
messengers in each direction to guarantee a messenger gets through to the other side.

⬜ True ⬜ False
 Explain:
While sending more messengers will reduce the likelihood of a failed delivery, the General’s Paradox
still cannot be solved. The network remains unreliable.

Problem 1f[2pts]: If our file system is prone to short-lived files, we should implement a write-back
cache as opposed to a write-through cache.

⬜ True ⬜ False
 Explain:
Temporary files created and destroyed before flushing of the cache may avoid having unnecessary
disk writes.

Problem 1g[2pts]: The File Allocation Table and Fast File System can both support soft and hard
links.

⬜ True ⬜ False
 Explain:
FAT cannot support hard links as all metadata for a file is stored in the directory entry. FAT cannot
support soft links either due to the lack of a directory entry field marking the file as a link.

Problem 1h[2pts]: In most systems, waiting time scales linearly with respect to utilization.

⬜ True ⬜ False
 Explain:

Other overhead costs, no matter how small, will add up especially with high utilization, resulting in
the non-linear relationship.

Problem 1i[2pts]: Just like any other I/O, NFS servers require invocations of open and close
syscalls.

⬜ True ⬜ False
 Explain:
While NFS does not require the client to make network open and close calls, the server still needs
to perform these to be able to perform an I/O operation.

CS 162 Spring 2022 Midterm III April 28th, 2022

Page 5/19

Problem 1j[2pts]: For Project 3, each process is created from another process, meaning all
processes are children of the very first process. Since the very first process is initialized with the
root directory as its current working directory (CWD), processes can’t have a CWD besides the root
directory.

⬜ True ⬜ False
 Explain:
chdir can be used to change the CWD of a process.

CS 162 Spring 2022 Midterm III April 28th, 2022

Page 6/19

Problem 2: Multiple Choice [18pts]

Choose all that apply.

Problem 2a[2pts]: For which situations would you require synchronization to resolve race
conditions in Project 3? Only consider synchronization at that abstraction level, not below.

A: ⬜ Simultaneous resizing of different inodes.

B: ⬜ Changing metadata fields in the inode.

C: ⬜ Adding directory entries to a directory.

D: ⬜ Calling file_deny_write on a file.

E: ⬜ None of the above.

Problem 2b[2pts]: What are some advantages of SSDs over HDDs?

A: ⬜ Random reads are faster.

B: ⬜ Higher durability over many write operations.

C: ⬜ Cost per byte of memory is lower.

D: ⬜ No moving parts, so more physically durable.

E: ⬜ None of the above.

Problem 2c[2pts]: Which of the following could be used in HDDs to improve performance?

A: ⬜ Increase disk rotation speed.

B: ⬜ Internal caching.

C: ⬜ Track skewing.

D: ⬜ Internal scheduling algorithms such as a simple elevator algorithm.

E: ⬜ None of the above.

Problem 2d[2pts]: Which of the following are true regarding device access schemes?

A: ⬜ Port-mapped I/O memory-mapped I/O, and DMA are all forms of programmed I/O.

B: ⬜ Memory-mapped I/O uses standard memory instructions such as load and store.

C: ⬜ Memory-mapped I/O uses a distinct memory space separate from physical memory.

D: ⬜ DMA maps control registers and display memory directly to physical memory.

E: ⬜ None of the above.

CS 162 Spring 2022 Midterm III April 28th, 2022

Page 7/19

Problem 2e[2pts]: Which of the following are true about the ACID properties for transactions?

A: ⬜ Atomicity means that each action within the transaction must be atomic.

B: ⬜ Consistency means that data must be consistent across all disks even with RAID.

C: ⬜ Isolation means that transactions appear to be serialized.

D: ⬜ Durability means that a transactions’ committed changes must persist through crashes.

E: ⬜ None of the above.

Problem 2f[2pts]: Which of the following are true about Project 3?

A: ⬜ The cache can coalesce writes into a single disk operation.

B: ⬜ The path /../.. is considered invalid.

C: ⬜ The buffer cache contains file data blocks, inode_disk structs, and inode structs.

D: ⬜ Different file descriptors can reference the same inode.

E: ⬜ None of the above.

Problem 2g[2pts]: Which of the following strategies are valid ways to detect congestion in a
network?

A: ⬜ Increases in packet round time.

B: ⬜ Dropped packets.

C: ⬜ Sender has not received ACK from receiver.

D: ⬜ Query the ISP’s congestion API.

E: ⬜ None of the above.

Problem 2h[2pts]: Select all of the following that are true about networking.

A: ⬜ Sockets can only be used to communicate between two different machines.

B: ⬜ Congestion control avoids overflowing the receiving buffer of the destination server.

C: ⬜ MAC addresses are assigned by your ISP.

D: ⬜ TCP does not provide guarantees on latency of bytes being delivered.

E: ⬜ Packet loss in a network is the result of network congestion.

CS 162 Spring 2022 Midterm III April 28th, 2022

Page 8/19

Problem 2i[2pts]:Select all of the following that are true about distributed transactions: (choose all
that apply):

A: ⬜

Distributed transactions consider two or more machines atomically reaching consensus
within a fixed time interval.

B: ⬜

The General’s Paradox states that without reliable messaging, it is impossible for the two
generals to come to the same decision.

C: ⬜

In the 2PC, a coordinator asks all workers to vote whether to commit a transaction or
abort. The election will only succeed if all workers vote to commit.

D:
⬜

2PC is resilient to any failure of a worker node.

E: ⬜ Byzantine Generals is the same problem as the General’s Paradox.

CS 162 Spring 2022 Midterm III April 28th, 2022

Page 9/19

Problem 3: Short Answer [29pts]

Please write your answer in THREE SENTENCES OR LESS (Answers longer than this may not
get credit!).

Problem 3a[3pts]: Consider a network file system backed by hard drives with the following
parameters.

● Network latency (RTT): 10 ms
● Disk seek latency: 3 ms
● Disk rotational speed: 6000 RPM

● Network bandwidth: 50 sectors/10 ms
● Disk controller latency: 1 ms
● Disk transfer speed: 100 MB/s

What is the average latency to read 50 sequential 4 KB sectors (in a single network request) from
this network file system? Assume there are no other pending requests to the system, and the CPU
processing overhead is negligible.

The queuing latency is 0 ms since there are no other pending requests. Average latency can be
calculated with ½ ´ (60000 ms/min / 6000 RPM) = 5 ms. Transfer latency will be 50 ´ 4 KB / 100
MB/s = 2 ms. Adding these with the network latency (10 ms), controller latency (1 ms), and seek
latency (3 ms) gives 21 ms.

Problem 3b[3pts]: Using Little’s Law, what is the maximum amount of inflight data in a network?
Explain. Note that this question is unrelated from the previous.

The maximum amount of inflight data in a network is the bandwidth-delay product, n = B * RTT
where B is the bandwidth and RTT is the round-trip time.

Problem 3c[3pts]: Is Two Phase Commit subject to the General’s Paradox?

No. The General’s Paradox requires consensus at the same time while 2PC considers eventual
consensus.

CS 162 Spring 2022 Midterm III April 28th, 2022

Page 10/19

Problem 3d[3pts]: Consider a TCP network implemented over the US Postal Service. The RTT
latency to send a packet/letter from Berkeley, CA to Cambridge, MA is 218 seconds (3 days). Each
packet/letter can store 32 KiB of written text. If we use the stop-and-wait protocol, what is the
bandwidth of this network in bits per second? Explain.

With stop-and-wait, this network will have 1 packet per RTT. Each packet is 2^15 bytes or 2^18
bits divided by 2^18 seconds which yields 1 bit per second.

Problem 3e[3pts]: For project 3, you are using a static array for your buffer cache with a clock
algorithm for eviction. What metadata should each cache block in the buffer cache have, and what
should that metadata be initialized to? Explain.

Each cache block needs a dirty bit (for write back), valid bit (for initialization), and use bit (for
clock) which should all be initialized to 0.

Problem 3f[2pts]: What is the major drawback of polling strategies versus I/O interrupts?

Polling wastes CPU cycles for infrequent I/O operations.

Problem 3g[3pts]: Consider a system using RAID 5. Ignoring any metadata operations (e.g. inode
accesses) and assuming no cache, how many disk I/O operations must occur when updating a data
block? Explain.

4. Both the data block (D) and parity block (P) need to be read in. Then, the old data is “removed”
from the parity block with Ptmp = P ⊕ D. The new parity block Pnew = Ptmp ⊕ Dnew. Finally, the the
new data block (Dnew) and new parity block (Pnew) are written back to disk.

CS 162 Spring 2022 Midterm III April 28th, 2022

Page 11/19

Problem 3h[3pts]: 3D XPoint is an emerging memory technology that provides persistent storage
with near-DRAM throughput. 3D XPoint supports updating blocks in-place. How does this simplify
an SSD’s FTL firmware?

Erasure blocks are no longer necessary. On a write, the FTL doesn’t need to write the block to
another page and update the mapping but rather can update the block in place.

Problem 3i[3pts]: Give a specific example why the End-to-End Principle says that reliable file
transfer should be implemented at end hosts and not in the network.

Even if implemented perfectly in the network, the end hosts still need to check since there can be
hardware faults, mistakes in file transfer programs or data communication system, or hardware
processors in either end hosts.

Problem 3j[3pts]: Journaling file systems require data to be written twice. How can the file system
optimize for good response time? How about good throughput? Explain.

Journaling file systems can use asynchronous write back, meaning changes will not immediately be
applied to disk on a commit. This allows for a good response time since committing a transaction
simply involves writing a small commit entry to a sequential log. To optimize for good throughput,
the file system can batch write-backs to schedule disk accesses more efficiently than immediate
individual or small groups of writes.

CS 162 Spring 2022 Midterm III April 28th, 2022

Page 12/19

Problem 4: Pintos Logs [16pts]

Gojo Satoru decides to add logging to Pintos. He plans for the log to be a fixed contiguous collection
of blocks (on disk) in the following format. Each row shown is of BLOCK_SECTOR_SIZE.

Header block

block A

block B

...

You are given the following methods and data structures.

/* Log */
struct log {
 uint32_t size; /* Size of log (in number of sectors). */
 block_sector_t start; /* Starting block number of log (i.e. header block). */
 struct logheader lh; /* In-memory copy of the log header block. */
};

/* Log header */
struct logheader {
 uint32_t n; /* Number of blocks used in log excluding header. */
 block_sector_t block[BLOCK_SECTOR_SIZE / 4 - 1];
};

static struct log log; /* In-memory representation of log, initialized at boot. */

#define BLOCK_SECTOR_SIZE 512
struct block* fs_device;
void block_read(struct block* block, block_sector_t sector, void* buffer);
void block_write(struct block* block, block_sector_t sector, void* buffer);

For instance, consider the following transaction.

1. Write all 0’s to the block at block_sector_t 2000,
2. Write all 1’s to the block at block_sector_t 2500,

The log would look like.

struct logheader lh = {2, {2000, 2500, ...}};

0000000000…

1111111111…

...

CS 162 Spring 2022 Midterm III April 28th, 2022

Page 13/19

Gojo also makes the following design decisions:
• The log can only contain at most one transaction at a time.
• Instead of writing a commit message to the log, a transaction is considered committed when

the header block is written to disk.
• All file system syscalls hold the global file system lock for simplicity.
• There is no buffer cache.

With logging, a typical file system syscall will look like the following.

lock_acquire(&fs_lock);
...
/* Perform syscall but use log_read/log_write instead of block_read/block_write. */
...
commit();
lock_release(&fs_lock);

Problems 4a-4m[1pt each]: Help Gojo implement this logging system. Only one piece of code
should be written per blank (i.e. no multiple statements with semicolons and no blank lines). Use
proper C syntax with the given APIs. Pseudocode or comments will not receive any credit. You
may only use methods and data structures given in this question as well as built-in ones (i.e. libc).
You may also ignore any memory leaks if applicable.

/* Read the log header from disk into log.lh. */
static void read_head(void) {
 block_read(fs_device, log.start, &log.lh);
}

/* Write log.lh to the log header on disk. */
static void write_head(void) {
 block_write(fs_device, log.start, &log.lh);
}

/* Add an entry to the log to represent the action "write BUFFER to the block at
 SECTOR." Assume read_head has already been called. */
void log_write(block_sector_t sector, void* buffer) {
 /* Check if block already in log. */
 for (int i = 0; i < log.lh.n; i++) {
 if (log.lh.block[i] == sector){
 block_write(fs_device, log.start + i + 1, buffer);
 return;
 }
 }

 log.lh.block[log.lh.n] = sector;
 block_write(fs_device, log.start + log.lh.n + 1, buffer);
 log.lh.n++;
}

CS 162 Spring 2022 Midterm III April 28th, 2022

Page 14/19

/* Read the block at SECTOR from disk. If the log contains an updated version of
 the block, read that instead. Assume read_head has already been called. */
void log_read(block_sector_t sector, void* buffer) {
/* Check if block already in log. */

 for (int i = 0; i < log.lh.n; i++) {
 if (log.lh.block[i] == sector) {
 block_read(fs_device, log.start + i + 1, buffer);

 return;
 }
 }
block_read(fs_device, sector, buffer);

}

/* Copy committed blocks from log to their home location. */
static void install_trans(void) {
 uint8_t* data = malloc(BLOCK_SECTOR_SIZE);
 for (int i = 0; i < log.lh.n; i++) {
 block_read(fs_device, log.start + i + 1, data);
 block_write(fs_device, log.lh.block[i], data);
 }
}

/* Commit transaction to disk and clean up. */
static void commit() {
 if (log.lh.n > 0) {
 /* Commit and apply transaction. */
 write_head();
 install_trans();

 /* Clear the log. */
 log.lh.n = 0;
 write_head();
 }
}

Problem 4n[3pts]: Suppose Gojo’s computer crashes unexpectedly. When Gojo powers up his
computer again, how can the OS tell if the transaction stored in the log has been committed? Provide
a clear criteria and explain.

On reboot, it suffices for the OS to read the header block of the log. If log.lh.n != 0, then the
transaction has been committed. This is because a transaction is committed once the header block is
written to disk (with log.lh.n > 0) and discarded when log.lh.n is set to zero.

CS 162 Spring 2022 Midterm III April 28th, 2022

Page 15/19

Problem 5: Filesystem Design [17 pts]

Tony Stark has hired you to create a file system to store the designs for his newest Iron Man suit.
He would like to use 32-byte sectors and 2-byte disk pointers. Blocks and sectors may be used
interchangeably throughout this question.

Problem 5a[2pts]: Tony wants to optimize for a workload where each file is accessed as a whole
(i.e. the entire file is read in). Most of Tony’s files are really large (but is still within max file size).
Given the choice between FAT and FFS, which would be better suited for minimizing access time
for the given workload? Explain.

A case could be made for either. FAT will require less disk accesses since the FAT array itself is
stored in a single sector, so it only needs to read in that and all the actual data sectors. On the other
hand, FFS will need to traverse through various levels of indirect pointers, incurring more disk
accesses. However, later versions of FFS (e.g. BSD 4.2) added optimizations for disk performance
such as block groups which could give a better access time than FAT.

Problem 5b[3pts]: You first consider using a filesystem with indexed inodes. Each inode will
contain 2 bytes of metadata. Given that each inode must fit exactly into a single sector, how many
direct, indirect, and doubly indirect pointers should you use to support a maximum file size of
exactly 10,560 bytes? Explain.

The inode has 2 B of metadata, so it can fit at most 30 B / 2 B = 15 pointers (of any type). For each
indirect/doubly indirect block, there are 32 B / 2 B = 16 direct/indirect pointers. Therefore, we can
fit one doubly indirect pointer which points to 16 ´ 16 ´ 32 B = 8,192 B. This leaves us to fill 2,368
bytes. An indirect pointer can point to 16 ´ 32 B = 512 B, so we can fit 4 indirect pointers. This
leaves us with 320 B to fill with direct pointers, which can be covered by 10 direct pointers. This
gives us 10 + 4 + 1 = 15 pointers total, fitting perfectly inside the inode with the metadata.

For 5c-5e, the indexed inode system you are considering will have 12 direct pointers, 2 indirect
pointers, and 1 doubly indirect pointer. Note that this is may be a different design with regards
to the pointer breakdown from the previous part. You are working with a 9,600 byte file called
jarvis.txt.

Problem 5c[3pts]: Assuming the file number is known (i.e. directory lookup not required), how
many disk sectors would need to be accessed to read the last byte of jarvis.txt with the indexed
inode system? Explain.

Using similar calculations as Problem 5b, we can see that 9,600 is the max file size. As a result,
first the inode is read in, then the doubly indirect block, then the indirect block, then the data block,
incurring a total of 4 disk accesses.

CS 162 Spring 2022 Midterm III April 28th, 2022

Page 16/19

Problem 5d[3pts]: Assuming the file number is known (i.e. directory lookup not required), how
many disk sectors would need to be accessed to read the last byte of jarvis.txt file with FAT?
Explain.

The FAT array is of size 216 ´ 2 B = 217 B = 212 sectors. The file takes up up 9,600 B / 32 B = 300
sectors, so we have to read 300 sectors (in the worst case) to traverse through the FAT array. Then,
one sector needs to be read in for the actual data.

Problem 5e[3pts]: With the indexed inode system, what fraction of the disk space used by
jarvis.txt is for the data? Explain. Leave your answer in an unsimplified fraction.

There are a total of 1 (inode) + 2 (indirect blocks from the indirect pointers) + 1 (doubly indirect
block) + 16 (indirect blocks from the doubly indirect pointer) = 20 sectors = 640 B that don’t
correspond to data. This means the actual data only takes up 9600 / (9600 + 640) = 0.9375 of the
disk.

Problem 5f[3pts]: You move on to making the system reliable. Assume there are 5 disks worth of
data. You consider using either RAID 1 or RAID 5 to store your data across these disks. Disk space
is expensive, so Tony wants to spend the least amount of money necessary. Which method, between
RAID 1 or RAID 5, would minimize the number of extra disks needed? Explain.

Since Tony has 5 disks worth of data, RAID 1 would require 5 extra disks due to each disk needing
to be mirrored. However, RAID 5 will require just one extra disk since it uses parity blocks instead
of a full mirror.

CS 162 Spring 2022 Midterm III April 28th, 2022

Page 17/19

[This Page Intentionally Left Blank]

CS 162 Spring 2022 Midterm III April 28th, 2022

Page 18/19

[Scratch Page: Do not put answers here!]

CS 162 Spring 2022 Midterm III April 28th, 2022

Page 19/19

[Scratch Page: Do not put answers here!]

