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Problem 1: True/False [18 pts] 
Please EXPLAIN your answer in TWO SENTENCES OR LESS (Answers longer than this may not 
get credit!).  Also, answers without an explanation GET NO CREDIT. 

Problem 1a[2pts]: If Thread A and B are in the same process, then Thread A can access local 
variables stored in Thread B’s stack. 

  True  ⬜ False 
Explain: Since both threads are in the same process, they share the same address space.  

Thus, assuming that Thread A can get an address of a local variable on Thread B’s stack, then it can 
read it or write it.  Note, that this fact doesn’t mean that it is a good idea to program this way! 

Problem 1b[2pts]: Let n be the size of the virtual address space.  On a fork() call, the OS does 
O(n) work to duplicate the parent’s address space for the child process. 

  True  ⬜ False 
Explain: The OS copies all of the parent’s page table entries (to perform copy-of-write), which 

mostly scales with the size of the parent’s virtual address space.  Note, however, that the question does 
say “virtual address space.” So, if the virtual address space is very sparsely populated (most of the 
virtual space is not mapped to actual physical addresses), then multi-level page tables would not have 
a number of page table entries that scale directly with the size of the virtual address space.  If you 
point this out, we will take “False” as an answer. 

Problem 1c[2pts]: Trying to use lseek() on file descriptor #1 will always result in an error. 

 ⬜ True   False 
Explain:  Descriptor #1 is for stdout.  While it is true the lseek() on the default (terminal) 

output will cause an error, the user can use dup2() to change stdout to refer to a file, which can 
accept lseek() operations.  

Problem 1d[2pts]: A child process can communicate with its parent by utilizing a data structure on 
its heap that was allocated before the parent performed a fork() system call.  

 ⬜ True   False 
Explain: Since child and parent have different address spaces, their heaps are distinct.  Any 

object allocated on the heap before executing fork(), will be copied into the child, but will not be 
shared between parent and child; or, in other words, a write to the object by the parent will only alter 
the parents copy of the object and will not affect the child’s copy in any way.  

Problem 1e[2pts]: If we have a queue of multiple waiters on a condition variable with Mesa 
scheduling, and we execute a cond_broadcast(), the waiters would be processed in FIFO order.  

⬜ True   False 
Explain: The typically implementation of cond_broadcast() makes no guarantees on the 

order in which threads are woken up. And, even if they were, there is no guarantee that they will 
reacquire the lock in the any order related to their original sleeping order. 
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Problem 1f[2pts]: There are situations where disabling interrupts must be used as opposed to other 
synchronization primitives. 

 True  ⬜ False 
Explain: Whenever code is modifying structures that could be altered by an interrupt handler, 

then it must disabled interrupts to avoid corrupting the data structures.  A good example is the basic 
scheduling queues which can get altered by the timer interrupt. 

 
Problem 1g[2pts]: Inside the Pintos kernel, we can find the struct thread of the current 
running thread by rounding down %esp to the nearest page boundary. 

 True  ⬜ False 
Explain: The Pintos kernel allocates a page-sized structure in the kernel for each new thread.  

This 4K page has the TCB at the beginning of the page and uses the rest of the page for a kernel stack.  
Consequently, taking the stack point ( %esp) and rounding it down to the nearest page boundary 
will find a pointer to the beginning of the page, which holds the TCB. 
 

Problem 1h[2pts]: The FPU registers must be saved and restored on every entry into the kernel.   

⬜ True   False 
Explain: Since the kernel doesn’t really use the FPU for anything, we don’t need to 
save the FPU registers unless we are context switching.  We would do that by pushing them 
on the kernel stack before we begin the context switch.  What this means, is that typical system 
calls, interrupts, or exceptions that will return to the current user can just leave the FPU 
registers alone. 

 
Problem 1i[2pts]: Context switching is implemented in Pintos by swapping user stacks. 

⬜ True   False 
Explain: Context switching is accomplished by swapping kernel stacks, not user 
stacks.  The reason this works is that the user stack is in (user) memory and the user stack 
pointer is pushed on the kernel stack automatically on entry to the kernel.  Consequently, 
swapping the kernel stack will implicitly swap out the user stack. 
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Problem 2: Multiple Choice [16pts] 
Problem 2a[2pts]: Which of the following are true about syscalls in Pintos?  (choose all that 
apply): 

A: ⬜  User programs directly call the syscall functions in the file src/userprog/syscall.c. 

B:   Arguments passed into system calls must be validated before they are used. 

C: ⬜  Syscalls in Pintos are run in user mode. 

D:   The wait syscall returns the exit code of the child process specified in the argument to the 
function. 

E: ⬜  None of the above. 

 

Problem 2b[2pts]: What are some reasons that overuse of threads is bad (i.e. using too many threads 
at the same time in a single process)? (choose all that apply): 

A: ⬜  The thread name-space becomes too large and fragmented, making it very difficult to 
efficiently track the current executing thread. 

B:   The overhead of switching between too many threads can waste processor cycles such that 
the overhead outweighs actual computation (i.e. thrashing) 

C:   Excessive threading can waste memory for stacks and TCBs 

D: ⬜  The number of page tables becomes too large, thus overloading the virtual memory 
mechanisms. 

E: ⬜  All of the above. 

 

Problem 2c[2pts]:  What are the disadvantages of disabling interrupts to serialize access to a critical 
section?  (choose all that apply): 

A:   User code cannot utilize this technique for serializing access to critical sections. 

B: ⬜  Interrupt controllers have a limited number of physical interrupt lines, thereby making it 
problematic to allocate them exclusively to critical sections. 

C:   This technique would lock out other hardware interrupts, potentially causing critical events 
to be missed. 

D:   This technique is a very coarse-grained method of serializing, yielding only one such lock 
for each core. 

E:   This technique could not be used to enforce a critical section on a multiprocessor. 
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Problem 2d[2pts]: In Pintos, every user thread is matched with a corresponding kernel thread 
(complete with a kernel stack).  What is true about this arrangement (choose all that apply):   

A:   When the user-thread makes a system call that must block (e.g. a read to a file that must go 
to disk), the thread can be blocked at any time by putting the kernel thread (with its stack) 
to sleep and waking another kernel thread (with its stack) from the ready queue. 

B: ⬜  The presence of the matched kernel thread makes the user thread run twice as fast as it 
would otherwise. 

C:   The kernel thread helps to make sure that the page table is constructed properly so that the 
user thread’s address space is protected from threads in other processes. 

D: ⬜  While user code is running, the kernel thread manages cached data from the file system to 
make sure the most recent items are stored in the cache and ready when the user needs them. 

E:   The kernel gains safety because it does not have to rely on the correctness of the user’s stack 
pointer register for correct behavior. 

 

Problem 2e[2pts]: What are some disadvantages of Base&Bound style address translation? (choose 
all that apply): 

A: ⬜  Base&Bound cannot protect kernel memory from being read by user programs. 

B:   Sharing memory between processes is difficult. 

C: ⬜  Context switches incur a much higher overhead compared to use of a page table. 

D:   Base&Bound will lead to external fragmentation. 

E: ⬜  With Base&Bound, each process can have its own version of address “0”. 

 

Problem 2f[2pts]: Which of the following are true about condition variables? (choose all that apply): 

A:   cond_wait(), and cond_signal() can only be used when holding the lock associated 
with the condition variable. 

B: ⬜  In practice, Hoare semantics are used more often than Mesa semantics. 

C: ⬜  Mesa semantics will lead to busy waiting in cond_wait(). 

D: ⬜  cond_signal() can only be called after setting the boolean condition associated with the 
condition variable to true. 

E: ⬜  All of the above. 
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Problem 2g[2pts]: Consider the following pseudocode implementation of a lock_acquire(). 
lock_acquire() {  
    interrupt_disable();  
    if (value == BUSY) {  
         put thread on wait queue;  
         Go to sleep();  
    } else {  
         value = BUSY;  
    }  
   interrupt_enable(); 
} 

Which of the following are TRUE? Assume we are running on a uniprocessor/single-core machine.  
(choose all that apply): 

A: ⬜  For this implementation to be correct, we should call interrupt_enable() before 
sleeping. 

B: ⬜  For this implementation to be correct, we should call interrupt_enable() before 
putting the thread on the wait queue. 

C:   For this implementation to be correct, sleep() should trigger the scheduler and the next 
scheduled thread should enable interrupts. 

D: ⬜  It is possible for this code to be run in user mode. 

E: ⬜  None of the above. 

 

Problem 2h[2pts]: Which of the following statements about files are true? (choose all that apply): 

A:   The same file descriptor number can correspond to different files for different processes. 

B: ⬜  The same file descriptor number can correspond to different files for different threads in the 
same process 

. 

C: ⬜  Reserved 0, 1, and 2 (stdin, stdout, stderr) file descriptors cannot be overwritten by a 
user program. 

D:   File descriptions keep track of the file offset. 

E:  An lseek() within one process may be able to affect the writing position for another 
process. 
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Problem 3: Readers-Writers Access to Database [12 pts] 
Reader() { 
  //First check self into system 
  lock.acquire(); 
  while ((AW + WW) > 0) {   
    WR++;  
    okToRead.wait(&lock);   

  WR‐‐;  
  } 
  AR++;  
  lock.release(); 
 
  // Perform read access 
  AccessDatabase(ReadOnly); 
 
  // Now, check out of system 
  lock.acquire(); 
  AR‐‐;  
  if (AR == 0 && WW > 0) 
    okToWrite.signal(); 
  lock.release(); 
} 

Writer() { 
  // First check self into system 
  lock.acquire(); 
  while ((AW + AR) > 0) { 
    WW++;  
    okToWrite.wait(&lock); 
    WW‐‐;  
  } 
  AW++;  
  lock.release(); 
 
  // Perform read/write access 
  AccessDatabase(ReadWrite); 
 
  // Now, check out of system 
  lock.acquire(); 
  AW‐‐;    
  if (WW > 0){       
    okToWrite.signal();   
  } else if (WR > 0) {   
    okToRead.broadcast(); 
  }   
  lock.release(); 
} 

Problem 3a[2pts]:  Above, we show the Readers-Writers example given in class.  What are the 
correctness constraints described by the Reader/Writer model above?  (Hint: When can 
writers/readers access the database)? 
 

Readers can only access the database when there are no writers. Furthermore, writers can only 
access the database when there are no active readers or writers. In addition, we will accept that 
this code priorities writes over reads. 

Problem 3b[2pts]:  The above code uses two condition variables, one for waiting readers and one 
for waiting writers. Suppose that all of the following requests arrive in very short order (while R1 and 
R2 are still executing): 

 Incoming stream: R1 R2 W1 R3 W2 W3 R4 R5 R6 W4 R7 W5 W6 R8 R9 W7 R10 

In what order would the above code process the above requests? If you have a group of requests 
that are equivalent (unordered), indicate this clearly by surrounding them with braces ‘{}’.  You can 
assume that the wait queues for condition variables are FIFO in nature (i.e. signal() wakes up the 
oldest thread on the queue). Explain how you got your answer. 
 

  Since writes have priority over reads and writes must execute one at a time, we get: 

{ R1, R2 } W1 W2 W3 W4 W5 W6 W7 { R3 R4 R5 R6 R7 R8 R9 R10 } 
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NOTE: Each of the following subparts are independent. Describe in 2-3 sentences the conceptual 
changes needed to support the new feature, including the positions where the described logic should 
be added or changed. 
 
Problem 3c[4pts]:  Suppose we have now upgraded our storage system to Google Sheets, which can 
now handle multiple writers accessing the database at the same time. How do we modify the existing 
logic to have multiple writers access the database concurrently? Assume all other correctness 
constraints are the same. 
 

Change the condition for writers to only check for active readers: 
 (while AR > 0) in line 3 line of the Writer() code. 

 
 Also change all okToWrite.signal() to  okToWrite.broadcast() in closing/checkout 
code at end of both Reader() and Writer() code. 

 
 
 
 
 
Problem 3d[4pts]: Suppose funds have run low, and our database can only handle a certain number 
of readers at a time. How do we modify the logic so that at most 10 readers may access the 
database at any time? 

 
Check the number of active readers in the condition check in line 3 of the Reader(): 
 
   while ((AW + WW) > 0 || (AR >= 10)) 
 
 Furthermore, in the Reader() closing/checkout, we need to see if there is a reader waiting for 
access if there aren’t any writers: 
 

// Existing code here 
AR‐‐; 
if (AR == 0 && WW > 0) 
  okToWrite.signal(); 
// New code here 
if (AR > 0) 
  okToRead.broadcast();  

 
This modification may not be before the writer signal, as we still want to prioritize writers if 
there are any waiting writers. 
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Problem 4: Atomic Synchronization Primitives [23pts] 
In class, we discussed a number of atomic hardware primitives that are available on modern 
architectures. In particular, we discussed “test and set” (TSET), SWAP, and “compare and swap” 
(CAS). They can be defined as follows (let “expr” be an expression, “&addr” be an address of a 
memory location, and “M[addr]” be the actual memory location at address addr): 

Test and Set (TSET) Atomic Swap (SWAP) Compare and Swap (CAS) 

TSET(&addr) { 
  int result = M[addr]; 
  M[addr] = 1; 
  return (result); 
} 

SWAP(&addr, expr) { 
  int result = M[addr]; 
  M[addr] = expr; 
  return (result); 
} 

CAS(&addr, expr1, expr2) { 
  if (M[addr] == expr1) { 
     M[addr] = expr2; 
     return true; 
  } else { 
     return false; 
  } 
} 

Both TSET and SWAP return values (from memory), whereas CAS returns either true or false. Note 
that our &addr notation is similar to a reference in c, and means that the &addr argument must be 
something that can be stored into. For instance, TSET could be used to implement a spin-lock acquire 
as follows: 

 int lock = 0; // lock is free 
   
  // Later: acquire lock 
  while (TSET(&lock)); 
 
CAS is general enough as an atomic operation that it can be used to implement both TSET and SWAP. 
For instance, consider the following implementation of TSET with CAS: 

  TSET(&addr) { 
    int temp; 
    do { 
      temp = M[addr]; 
    } while (!CAS(addr,temp,1)); 
    return temp; 
  }   

 
Problem 4a[2pts]: 
Show how to implement a spinlock acquire with a single while loop using CAS instead of TSET. 
You must only fill in the arguments to CAS below: 
 
  // Initialization 
  int lock = 0;  // Lock is free 
 
  // acquire lock 
 
  while (  !CAS( ________________________________ )  ); 

 
 
 
 
 

lock , 0, 1 
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Problem 4b[2pts]: 
Show how SWAP can be implemented using CAS. Don’t forget the return value.  
 
  SWAP(&addr, reg1) { 
 
 
    Object result; 
 
    Do { 
       
Line 1:     _____________________________; 
 
Line 2:   } while ( ________________________________ ); 
 
    return result; 
 
 
  } 
  
 
Problem 4c[2pts]: 
With spinlocks, threads spin in a loop (busy waiting) until the lock is freed. In class we argued that 
spinlocks were a bad idea because they can waste a lot of processor cycles. The alternative is to put 
a waiting process to sleep while it is waiting for the lock (using a blocking lock). Contrary to what 
we implied in class, there are cases in which spinlocks would be more efficient than blocking locks. 
Give a circumstance in which this is true and explain why a spinlock is more efficient. 
 

If the expected wait time of the lock is very short (such as because the lock is rarely contended 
or the critical sections are very short), and it is possible for the holder of the lock to make 
progress while the waiter is spinning (really for a multi-core or multiprocessor system), 
then it is possible that a spin lock will waste many fewer cycles than putting threads to 
sleep/waking them up.  
 
The important issue is that (1) the expected wait time must be less than the time to put a thread 
to sleep and wake it up and (2) the spinning thread is not impeding the progress of the releasing 
thread.  A single-core machine does not meet this requirement. 

 

result = M[addr]; 

!CAS(addr, result, reg1) 
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Using Atomic Primitives to Implement a LOCK-Free Queue: 
A queue is considered “lock-free” if multiple threads can operate on this object simultaneously 
without the use of locks, busy-waiting, or sleeping. In this problem, we construct a lock-free FIFO 
queue using atomic CAS operation. We need both an Enqueue() and Dequeue() method.  

We are going to do this in a slightly different way than normally.  Rather than Head and Tail 
pointers, we are going to have “PrevHead” and Tail pointers.  PrevHead will point at the last 
object returned from the queue.  Thus, we can find the head of the queue (for dequeuing). If we 
don’t worry about simultaneous Enqueue() or Dequeue() operations, the code is straightforward: 
 
/*** Queue Entries and Structure ***/ 
typedef struct QueueEntry {     
  struct QueueEntry *next; 
  void *stored; 
} QueueEntry; 
typedef struct Queue {   
  QueueEntry *prevHead; 
  QueueEntry *tail; 
} Queue; 
/*** Queue initialization ****/ 
void initQueue(Queue *newqueue) 
{ 
  newqueue‐>prevHead = allocQueueEntry(NULL); 
  newqueue‐>tail = newqueue‐>prevHead; 
} 
/*** Allocate a QueueEntry to hold pointer to item ***/ 
QueueEntry *allocQueueEntry(void *myItem) 
{ 
  QueueEntry *newqueue = (QueueEntry *)malloc(sizeof(QueueEntry)); 
  newqueue‐>stored = myItem; 
  newqueue‐>next = NULL; 
  return newqueue; 
} 
 
/*** Enqueue operation ****/ 
void Enqueue(Queue *myqueue, void *newobject)  { 
  QueueEntry *newEntry = allocQueueEntry(newobject); 
  QueueEntry *oldtail = myqueue‐>tail; 
  myqueue‐>tail = newEntry; 
  oldtail‐>next = newEntry; 
} 
/*** Dequeue operation ***/ 
void *Dequeue(Queue *myqueue) { 
  QueueEntry *oldprevHead = myqueue‐>prevHead; 
  QueueEntry *nextEntry = oldprevHead‐>next; 
  if (nextEntry == NULL) 
    return NULL; 
  myqueue‐>prevHead = nextEntry; 
  free(oldprevHead); 
  return nextEntry‐>stored; 
} 
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Problem 4d[3pts]: 
For this non-multithreaded code, draw the state of a queue with 2 queued items on it: 
 
 
 
 
 
 
Problem 4e[3pts]: For each of the following potential context switch points, state whether or not a 
context switch at that point could cause incorrect behavior of Enqueue(); Explain!  
 
    void Enqueue(Queue *myqueue, void *newobject)  { 
 1      QueueEntry *newEntry = allocQueueEntry(newobject); 
 2      QueueEntry *oldtail = myqueue‐>tail; 
 3      myqueue‐>tail = newEntry; 
      oldtail‐>next = newEntry; 
    } 

Point 1: No. Construction of a QueueEntry is a purely local operation (and does not touch shared state). 

Point 2: Yes. An intervening Enqueue() operation will move the shared variable “tail” (and enqueue 
another object). As a result, the subsequent “tail=newEntry” will overwrite the other entry. 

Point 3: No.  At this point in the execution, only the local thread will ever touch “oldtail->next” (since we 
have moved the tail). Thus, we can reconnect at will.  People who worried that the linked list is 
“broken” until this operation can relax. The worse that will happen is that the list appears to be 
shorter than it actually is until execution of “oldtail->next=newEntry,” at which point the new 
entry becomes available for subsequent dequeue. 

Problem 4f[3pts]: Rewrite code for Enqueue(), using the CAS() operation, such that it will work for 
any number of  simultaneous Enqueue and Dequeue operations.  You should never need to busy wait.  
Do not use locking (i.e. don’t use a test-and-set lock). Fill in each of the empty lines below. We 
will be grading on conciseness. Do not use more than one CAS().  Hint: wrap a do-while around 
vulnerable parts of the code identified above. 
 
  void Enqueue(Queue *myqueue, void *newobject)  { 
    QueueEntry *newEntry = allocQueueEntry(newobject); 
    QueueEntry *oldtail; 
 
    // Insert missing code (shown by lines) 
 
    do {  // One of following 3 lines will have a ‘while’! 
 
Line 1:   _____________________________________________________;  
 
 
Line 2:   _____________________________________________________; 
 
 
Line 3:   _____________________________________________________; 
 
 

  } 

oldtail = myqueue‐>tail 

} while (!CAS(myqueue‐>tail, oldtail, newEntry)) 

oldtail‐>next = newEntry 
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Problem 4g[3pts]: For each of the following potential context switch points, state whether or not a 
context switch at that point could cause incorrect behavior of Dequeue(); Explain!  (Note: Assume 
that the queue is not empty when answering this question, since we have removed the null-queue 
check from the original code): 
 
    void *Dequeue(Queue *myqueue) { 
 1      QueueEntry *oldprevHead = myqueue‐>prevHead; 
 2      QueueEntry *nextEntry = oldprevHead‐>next; 
 3      myqueue‐>prevHead = nextEntry; 
      free(oldprevHead); 
      return nextEntry‐>stored; 
    } 

Point 1:  Yes. The problem is that an intervening Dequeue() could end up getting the same entry ‘nextEntry’ 
that we are returning; consequently we end up dequeing the same entry multiple times. 

Point 2: Yes. The problem is that an intervening Dequeue() could end up getting the same entry ‘nextEntry’ 
that we are returning; consequently we end up dequeing the same entry multiple times. 

Point 3:  No. The nextEntry has already been detached from the queue and is purely local. Thus, all that 
we are doing is removing the stored value from nextEntry for returning it. 

Problem 4h[5pts]: Rewrite code for Dequeue(), using the CAS() operation, such that it will work 
for any number of  simultaneous Enqueue and Dequeue operations.  You should never need to busy 
wait.  Do not use locking (i.e. don’t use a test-and-set lock). Fill in each of the empty lines below. 
We will be grading on conciseness.  Do not use more than one CAS(). You should correctly handle 
an empty queue by returning “null”. Hint: wrap a do-while around vulnerable parts of the code 
identified above and add back the null-check from the original code. Also, assign “result” inside 
loop. 
 
  void *Dequeue(Queue *myqueue) { 
    QueueEntry *oldprevHead, *nextEntry; 
    void *result; 
 
    // Insert missing code here (shown by lines)   
    do {  // One of following 5 lines will have a ‘while’! 
 
Line 1:   ________________________________________________________________; 

 

Line 2:   ________________________________________________________________; 
 

Line 3:   ________________________________________________________________; 

 

Line 4:   ________________________________________________________________; 
 

Line 5:   ________________________________________________________________; 

    free(oldprevHead); 

    return result; 

  } 

  

oldprevHead = myqueue‐>prevHead 

nextEntry = oldprevHead‐>next 

if (nextEntry==null) return null 

result = nextEntry‐>stored 

} while (!CAS(myqueue‐>prevHead, oldprevHead, nextEntry)) 
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Problem 5: Short Answer Potpourri [15 pts] 
 
For the following questions, provide a concise answer of NO MORE THAN 2 SENTENCES per 
sub-question (or per question mark). 

 
Problem 5a[3pts]: What is the difference between Mesa and Hoare scheduling for monitors? How 
does this affect the programming pattern used by programmers (be explicit)?  
 

With Hoare scheduling, a signal() operation from one thread immediately wakes up a 
sleeping thread, hands the lock to the sleeping thread, and starts the sleeping thread executing; 
control returns to the signaling thread after the signaled thread attempts to release the lock 
(which is then handed back to the signaling thread). With Mesa scheduling, the signaling thread 
simply placed the signaled thread on the run queue and continues executing with the lock.  
 
The practical consequence is that Mesa-scheduled monitors require programmers to recheck 
conditions after waking (typically with a “while” loop): 
 

while (condition not satisfied) 
 condition.wait(); 
 

With Hoare-scheduled monitors, the “while” statement can often be replaced with an “if” 
statement. 

 
Problem 5b[3pts]: Explain the key difference between the low-level and high-level file APIs in C 
as discussed in lecture. Why might the high-level file API be higher performance than the low-level 
API? 
 

The high-level file API buffers data in user memory. As the high-level API reads data in large 
blocks, it will often result in fewer syscalls.   

 
 
Problem 5c[2pts]: Recent Linux kernel versions introduce the new sendfile(2) system call that 
transfers data from one file descriptor to another. It’s signature is: 
 
      ssize_t sendfile(int out_fd, int in_fd, off_t *offset, size_t count); 
 
Why might it be faster to use sendfile() instead of read-ing from in_fd and then write-ing to 
out_fd? Your answer must focus on the location of data in memory. 

 
Because sendfile() copies data from in_fd to out_fd without transferring data to and from 
user space. With fewer overall copies, the transfer will be faster. 
 
Must mention that read + write incurs an additional copy to/from user space. No credit for 
other justifications. 
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Problem 5d[3pts]: Name three ways in which the processor can transition from user mode to 
kernel mode. Can the user execute arbitrary code after the transition? 
 

The processor transitions from user mode to kernel mode when (1) the user executes a system 
call, (2) the processor encounters an synchronous exception such as divide by zero or page fault, 
(3) the processor responds to an interrupt.  The user cannot execute arbitrary code because entry 
into the kernel is through controlled entry points (not under control of the user). 
 
Need all three of these to get full credit. 

 
 
 
 
 
Problem 5e[2pts]: When handling Pintos syscalls in userprog/syscall.c, how can we tell 
what syscall the user called, since there is only one syscall_handler function? 
 

The first argument to the syscall_handler is an enum that specifies which syscall is needed. This 
is passed in from the lib/user/syscall.c file for each syscall. 

 
 
 
 
 
 
 
Problem 5f[2pts]: How does a modern OS regain control of the CPU/core from a program stuck in 
an infinite loop? 
 

Modern OSes use a timer interrupt to regain control from an executing user thread.  The timer 
interrupt handler will initiate a context switch to another thread.  Thus, even though on user 
thread is wasting time and never returning to the OS, the OS can still context switch and all 
things like a shell to keep running (permitting a user to kill the buggy program). 
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Problem 6: Adding dup() to Pintos [16 pts] 
  
As an operating systems fanatic, Nathan has recently been using Pintos as his daily driver. 
However, when writing some C programs, he’s finding the lack of some file operation syscalls 
quite frustrating to work with. Specifically, Nathan would really like to use dup. As a superb CS 
162 student, you have been tasked with implementing it. The descriptions for each are given below. 
Note that there are subtle differences from the Unix versions, mainly for sake of simplicity. 
 
/* Creates a copy of the file descriptor FD such that the copy and original 
   point to the same file description. The new file descriptor must be one 
   above the max of the current file descriptors. For instance, if the 
   existing file descriptors were [1, 5, 7], 8 would be used as the new file 
   descriptor. Return new file descriptor on success or ‐1 for an invalid FD. 
*/ 
int dup(int fd); 
 
Complete the blanks in the skeleton for syscall_handler() to implement this syscall. (Blanks 
are labeled with capital letters).  For simplicity, you may assume that Nathan will not write any 
malicious user programs, so you may simply access syscall arguments passed in through the user 
stack (i.e. no need to copy them to the kernel stack). 
 
Below are the structure definitions within the kernel that might be helpful for this problem: 
 
/* Process control block */ 
struct process { 
  ... 
  struct list fdt;     /* File descriptor table of struct fd. */ 
  ... 
};  
/* File description */ 
struct file { 
  ... 
  off_t pos;           /* Current position. */ 
  ... 
};  
/* File descriptor */ 
struct fd { 
  int num; 
  struct file* file; 
  struct list_elem elem; 
}; 
/* Interrupt stack frame */ 
struct intr_frame { 
  ... 
  void* esp; 
  uint32_t eax; 
  ... 
}; 
 



CS 162 Spring 2022 Midterm I SOLUTION  February 17th, 2022 

 Page 18/20

Below are function signatures that might be helpful when solving this problem. 
 
 
/****** List Operations ******/ 
struct list_elem* list_begin(struct list*); 
struct list_elem* list_next(struct list_elem*); 
struct list_elem* list_end(struct list*); 
void list_push_back(struct list*, struct list_elem*); 
#define list_entry(LIST_ELEM, STRUCT, MEMBER) 
  
/****** Lock Operations *******/ 
void lock_acquire(struct lock*); 
void lock_release(struct lock*); 
 
/****** Memory Operations ******/ 
void *malloc(size_t size); 
void free(void *ptr); 
  
/******* Global file system lock *******/ 
struct lock fs_lock; 
  
/******* 
 * The following function retrieves the struct file* corresponding to file 
 * descriptor NUM in the current process's file descriptor table.  
 * Returns NULL if file descriptor NUM is invalid.  
 *******/ 
struct file* get_file(int num); 
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Here is the skeleton of syscall_handler() to complete.  You will fill in the missing lines on your 
answer sheet.  Your code must be written in proper C code with the given APIs. Pseudocode or 
comments will not be given any credit. You may only use methods and data structures given in this 
question as well as any built-in ones. You may assume calls to any given method will succeed. Only 
one piece of code must be written per blank (i.e. no multiple statements with semicolons). Each blank 
must contain code and cannot be a blank line. Assume fs_lock is initialized. 

   
    void syscall_handler(struct intr_frame *f) { 
      uint32_t* args = (uint32_t*) f‐>esp; 
      
      switch (args[0]) { 
        ... 
        case SYS_DUP: 
 
A:       ___________________; 
   
B:       struct file* file = __________________; 
   
C:       if (___________________) { 
 
D:         ___________________; 
          } else { 
            int max_fdnum = ‐1; 
            struct list* fdt = &thread_current()‐>pcb‐>fdt; 
            struct list_elem *e; 
   
E:         for (________________________________;_____________;____________) {   
   
F:           struct fd* fd = ________________________________; 
   
G:           if (______________________) { 
   
H:           ___________________; 
              } 
            } 
           
I:         struct fd* newfd = _______________________________________; 
   
J:         newfd‐>num = _______ __________________; 
   
K:         newfd‐>file = ___________________; 
      
L:         ___________________; 
          } 
 
M:       ___________________; 
          break; 
        ... 
      } 
    }  

lock_acquire(&fs_lock)     

get_file(args[1]) 

file == NULL     

f‐>eax = ‐1     

e = list_begin(fdt); e != list_end(fdt); e = list_next(e) 

list_entry(e, struct fd, elem)     

fd‐>num > max_fdnum     

max_fdnum = fd‐>num     

(struct fd*) malloc(sizeof(struct fd))   

f‐>eax = max_fdnum + 1   

file 

list_push_back(fdt, &newfd‐>elem) 

lock_release(&fs_lock) 
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Answers for question 6 can be filled in here (or put on answer sheet if there is one): 
 
 
Problem 6A [1pt]:   ______________________________________ ; 
 
 
Problem 6B [1pt]:   ______________________________________ ; 
 
 
Problem 6C [1pt]:   (_____________________________________ ) 
 
 
Problem 6D [1pt]:   ______________________________________ ; 
 
 
Problem 6E [2pt]:   for (_________________;__________________;______________________ ) 
 
 
Problem 6F [2pt]:   ______________________________________ ; 
 
 
Problem 6G [1pt]:   (_____________________________________ ) 
 
 
Problem 6H [1pt]:   ______________________________________ ; 
 
 
Problem 6I [1pt]:   ______________________________________ ; 
 
 
Problem 6J [1pt]:   ______________________________________ ; 
 
 
Problem 6K [1pt]:   ______________________________________ ; 
 
 
Problem 6L [2pt]:   ______________________________________ ; 
 
 
Problem 6M [1pt]:   ______________________________________ ; 
 
 
 

 

lock_acquire(&fs_lock)     

f‐>eax = ‐1    

file == NULL     

get_file(args[1]) 

e = list_begin(fdt); e != list_end(fdt); e = list_next(e) 

list_entry(e, struct fd, elem)     

fd‐>num > max_fdnum     

max_fdnum = fd‐>num     

(struct fd*)malloc(sizeof(struct fd))   

f‐>eax = max_fdnum + 1   

file 

list_push_back(fdt, &newfd‐>elem) 

lock_release(&fs_lock) 


