
CS 162 Operating Systems and Systems Programming
Spring 2021 Midterm 2

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

This is a proctored, closed-book exam. During the exam, you may not communicate with other people
regarding the exam questions or answers in any capacity.

When answering questions, make no assumptions except as stated in the problems. If there that you believe
is open to interpretation, please use the “Clarifications” button to request a clarification. We will issue an
announcement if we believe your question merits one.

This exam has 4 parts of varying difficulty and length. Make sure you read through the exam completely before
starting to work on the exam. Answering a question instead of leaving it blank will NOT lower your score. We
will overlook minor syntax errors in grading coding questions.

(a)

Name

(b)

Student ID

(c)

Please read the following honor code: “I understand that this is a closed book exam. I hereby promise that
the answers that I give on the following exam are exclusively my own. I understand that I am allowed to
use two 8.5x11, double-sided, handwritten cheat-sheets of my own making, but otherwise promise not to
consult other people, physical resources (e.g. textbooks), or internet sources in constructing my answers.”
Type your full name below to acknowledge that you’ve read and agreed to this statement.

Exam generated for <EMAILADDRESS> 3

1. (18.0 points) True/False

Please EXPLAIN your answer in TWO SENTENCES OR LESS. Answers without any explanation GET
NO CREDIT.

(a) (3.0 points)

i.

In a page table-based addressing scheme, every virtual address in a process’ virtual address space
always corresponds to a valid page table entry.

True

False

ii.

Explain.

Exam generated for <EMAILADDRESS> 4

(b) (3.0 points)

i.

In a page table-based addressing scheme, the TLB is a cache for page table entries.

True

False

ii.

Explain.

Exam generated for <EMAILADDRESS> 5

(c) (3.0 points)

i.

Page faults always cause a user program to terminate.

True

False

ii.

Explain.

Exam generated for <EMAILADDRESS> 6

(d) i. (3.0 points)

In PintOS with priority donation, immediately after a thread releases a lock, the thread’s effective
priority may be different from the thread’s base priority.

A.# True

False

B.

Explain.

Exam generated for <EMAILADDRESS> 7

(3.0 points)

In PintOS with priority donation, immediately after a thread releases a lock, the thread’s effective
priority must be the same as the thread’s base priority.

ii. A.# True

False

B.

Explain.

Exam generated for <EMAILADDRESS> 8

(e) (3.0 points)

i.

Assume that Job A always bursts for 10 ticks at a time, and runs forever. Also assume that our system
uses a MLFQS (Multi-Level Feedback Queue Scheduler), with the following structure:

(Round-Robin (Q=8), Round-Robin (Q=16), FCFS)

If Job A is initially placed on the top queue when it enters the system, it will eventually be placed on
the middle queue; after this point, when the job is not running, it will always be placed on the middle
queue.

True

False

ii.

Explain.

Exam generated for <EMAILADDRESS> 9

(f) (3.0 points)

i.

Assume that, in our system, there are 10 jobs that will run for 100 ticks total (and never voluntarily
yield the CPU or block). If our system uses a round robin scheduler, increasing the quantum from 10
ticks to 20 ticks will always result in higher throughput.

True

False

ii.

Explain.

Exam generated for <EMAILADDRESS> 10

2. (18.0 points) Multiple Choice

In the following multiple choice questions, please select all options that apply.

(a) (3.0 pt)

Which of the following scheduling algorithms may cause starvation?

2 First Come First Serve (FCFS)

2 Round-Robin (RR)

2 Shortest Remaining Time First (SRTF)

2 Completely Fair Scheduler (CFS)

2 None of the above

(b) (3.0 pt)

Which of the following descriptions of Banker’s Algorithm are correct?

2 Banker’s Algorithm is used in deadlock recovery.

2 Banker’s Algorithm can be used to determine whether or not a system is guaranteed to deadlock.

2 Using Banker’s Algorithm results in an execution that is guaranteed to avoid deadlock.

2 Banker’s Algorithm relies on having known upper limits for resource requests per thread.

2 None of the above.

(c) (3.0 pt)

Which of the following scheduling algorithms are (1) deterministic and (2) will eventually preempt any
infinitely looping thread in favor of a thread with finite run-time?

2 First Come First Serve (FCFS)

2 Round-Robin (RR)

2 Multi-Level Feedback Queue Scheduling (MLFQS)

2 Lottery Scheduling

2 Strict Priority Scheduling

2 Shortest Remaining-Time First Scheduling (SRTF)

2 None of the above

(d) (3.0 pt)

Which of the following could be components of a page table entry (PTE)?

2 Physical page number

2 Virtual page number

2 Valid bit

2 Offset

2 None of the above

Exam generated for <EMAILADDRESS> 11

(e) (3.0 pt)

Assume that the goal for our page replacement policy is to minimize total page replacements. Which of
the following statements are accurate?

2 FIFO can have the same performance as MIN.

2 Clock Algorithm always has the same performance as Second-Chance List Algorithm.

2 LRU performs at least as good as any Nth-Chance Clock Algorithm.

2 An optimal page replacement policy prevents thrashing.

2 None of the above.

(f) (3.0 pt)

Assume we make a single memory access on a processor which has no caches and no TLB. All else being
equal, which of the following are true?

2 Base-and-bound will on average be faster than a single-level page table.

2 An inverted page table will on average be faster than a single-level page table.

2 A single-level page table will on average be faster than a multi-level page table.

2 A multi-level page table will on average be faster than an inverted page table.

2 None of the above.

Exam generated for <EMAILADDRESS> 12

3. (38.0 points) Short Answer

(a) (11.0 points) Virtual Memory Bits Pieces

Suppose we have virtual memory mapped with a two-level page table scheme, where each page table fits
exactly inside a page, and each page table entry is exactly 4 (22) bytes in size. We also have a physical
memory size of 16 MiB (224 B), and a page size of 4 KiB (212 B). Additionally, we have a fully-associative
tagged TLB, where each entry includes 1 byte of metadata containing information including a valid bit,
dirty bit, and a process ID.

i. (1.0 pt)

How many bits are in the offset of an address in this scheme?

ii. (1.0 pt)

How many bits are in the first-level page table index in this scheme?

iii. (1.0 pt)

How many bits are in the second-level page table index in this scheme?

iv. (1.0 pt)

How many bits are in the physical page number in this scheme?

v. (1.0 pt)

How large of a virtual address space does this scheme address, in bytes? You may leave your answer
as a power of 2.

vi. (2.0 pt)

If our TLB had 8 entries, how big is it in bytes?

Exam generated for <EMAILADDRESS> 13

vii. (2.0 pt)

Assume we start with an empty TLB and make the following memory accesses:

• Process 1 accesses 0x10000000
• Process 1 accesses 0x10001000
• Process 2 accesses 0x10000000

How many entries of our TLB will now be filled?

viii. (2.0 pt)

How many different pages will now be in memory, assuming there were 0 valid pages in physical
memory before these accesses?

Exam generated for <EMAILADDRESS> 14

(b) (9.0 points) Rocky Wrench’s Replacements

Monty Mole and Rocky Wrench disagree about the best page replacement policies for demand paging –
each is trying to throw a wrench into the other’s arguments! In the following problems, assume that the
system has 3 pages of physical memory (1-3), and the program they run uses 4 pages of virtual memory
(A-D). Provide lists as a comma-separated list of virtual memory accesses (e.g. A,B,C,D,A).

i. (3.0 pt)

Rocky Wrench is convinced that the best page replacement policy for demand paging is FIFO (First
In First Out). Demonstrate the problems with FIFO by providing a list of 6 additional accesses (after
the first two accesses that are given) that would cause every access to page fault.

Page \ Access A B

1 A

2 B

3

ii. (3.0 pt)

Monty Mole is convinced that the best page replacement policy for demand paging is MRU (Most
Recently Used). Demonstrate the problems with MRU by providing a list of 6 additional accesses
(after the first two accesses that are given) that would cause every access to page fault.

Page \ Access A B

1 A

2 B

3

iii. (3.0 pt)

After putting their disagreements aside, they come up with an optimal page replacement policy. Monty
Mole and Rocky Wrench use that replacement policy with a memory access pattern that contains 3
A’s, 2 B’s, 2 C’s, and 1 D (not necessarily in that order; you should not assume it begins with A and
B). What is the maximum total number of page faults that could occur when using that optimal page
replacement policy on such a memory access pattern?

Exam generated for <EMAILADDRESS> 15

(c) (4.0 points) Rosalina’s Special Scheduler

Rosalina’s Round-Robin (RR) scheduler is a special implementation of RR that considers thread priorities.
More specifically, the quanta of a thread (in ticks) is equal to its priority. Say there is an IO-bound thread,
Thread A, with a priority of 64 that always bursts for 1 tick in between I/O. Another CPU-bound thread,
Thread B, has a priority of 2 and always bursts for 100 ticks in between I/O. Assume each I/O operation
takes 1 tick.

i. (2.0 pt)

Assuming the two threads only yield for I/O, for what fraction of time will Thread A run on the CPU
on average?

ii. (2.0 pt)

Why doesn’t the higher priority thread (Thread A), with a higher quanta, run for a majority of the
time?

Exam generated for <EMAILADDRESS> 16

(d) (14.0 points) Mario’s Moves

Mario wrote a program that synchronizes three of his special moves as threads.

sem_t semaphore;
pthread_mutex_t lock;

void threadA() {
sem_wait(&semaphore); // line 1
printf("threadA!");
sem_post(&semaphore)

}

void threadB() {
sem_wait(&semaphore); // line 1
pthread_mutex_lock(&lock); // line 2
printf("threadB!");
pthread_mutex_unlock(&lock);
sem_post(&semaphore);

}

void threadC() {
sem_wait(&semaphore); // line 1
pthread_mutex_lock(&lock); // line 2
sem_wait(&semaphore); // line 3
printf("threadC!");
sem_post(&semaphore);
pthread_mutex_unlock(&lock);
sem_post(&semaphore);

}

int main() {
sem_init(&semaphore, 0, /*initial value*/ 2);
pthread_mutex_init(&lock, NULL);
pthread_t threads[3];
pthread_create(&threads[0], NULL, threadA, NULL);
pthread_create(&threads[1], NULL, threadB, NULL);
pthread_create(&threads[2], NULL, threadC, NULL);

}

Exam generated for <EMAILADDRESS> 17

i. (4.0 pt)

What order of execution will cause this program to print nothing? Provide your answer as a list of
lines of thread:N, specifying the order of execution of the lines of code of each thread.
NOTE: include any lines/expressions that start executing but may not finish executing.

Example:

threadA:1
threadC:1
threadC:2
threadC:3
threadB:1

ii. (2.0 pt)

What is name of the condition that causes the program to print nothing?

iii. (4.0 points)

Mario realizes his mistake, and decides to implement a new function to replace pthread_mutex_lock to
prevent this from happening. Complete the function below to ensure that all three print statements are
executed regardless of how the threads are scheduled (assume that every pthread_mutex_lock(&lock)
line is replaced with pthread_mutex_lock_safe()). You may only use one statement/expression in
each of the provided blanks.

void pthread_mutex_lock_safe() {
___[A]___;
pthread_mutex_lock(&lock);
___[B]___;

}

A.

[A]

Exam generated for <EMAILADDRESS> 18

B.

[B]

Exam generated for <EMAILADDRESS> 19

iv. (4.0 pt)

Explain how your solution above changes the ordering of resource allocation to prevent the condition
you noted in 4.2.

Exam generated for <EMAILADDRESS> 20

4. (26.0 points) Monty Mole’s Memory Management

In order to reduce the latency of L1 cache hits, many modern CPU architectures employ a type known as
Virtually-Indexed, Physically-Tagged (VIPT) caches. In this system, rather than having to perform address
translation to be able to look up an entry in the cache, the CPU instead selects the cache set based on the virtual
address in parallel with address translation, only afterwards storing or comparing bits from the now-translated
physical address for the tag. You have been contracted to help Monty Mole implement such a design for the L1
data cache of an application-specific operating system.

After much deliberation, you and your team of Koopalings have decided on a 256 byte, 2-way set associative
cache with LRU replacement and 16-byte cache lines. To test the effectiveness of this layout, you decide to
simulate a series of cache accesses on your new design.

Given the list of memory addresses, the initial state of the cache, and the layout of physical memory below, fill
out the the final state of the cache once all memory accesses are complete. An LRU bit value of 0 indicates that
that set’s Entry 0 is up for eviction, while an LRU bit value of 1 indicates the same for Entry 1.

Assume the following details hold for the system throughout the problem:

• The operating system uses single-level paging for address translation.
• Pages are 256 bytes in size.
• The Page Table Base Register contains the value 0x10000000.
• All relevant virtual addresses are present within the system’s TLB before execution begins, and remain
there throughout.

• All memory contents are displayed in big-endian order.
• Each Page Table Entry is 4 bytes long: bits [31:8] contain the PPN, bit 0 contains the valid bit, and bits
[7:1] are unspecified.

• All pages are fully accessible by the running process.

You may find it helpful to use the emailed exam PDF as a reference in this problem. The physical memory table
below is also available as a separate PDF. Some answers may be related, so use shortcuts wherever
possible!

Address 0x0 0x4 0x8 0xC

0x10000000 0x10840111 0x330CD003 0x00000000 0x10010000

0x10000010 0xB33A0001 0xA55A0200 0x01A05203 0x00000000

. . .

0x1003C000 0xA55A0201 0x5500BE47 0xA55A0001 0xA55A0101

0x1003C010 0x3300C081 0x00000000 0x00000000 0xA55A0200

. . .

0x12100440 0x3300BE47 0x33000000 0x3300C001 0xB55A0201

0x12100450 0x730F1101 0x730F1201 0x730F1301 0xB55A0200

. . .

0x3300C000 0xFEEEEEED 0xD0600000 0xFA1AFE15 0x5EAF00D5

0x3300C010 0xCAFEF00D 0x444417F0 0xF865179C 0x00000000

0x3300C020 0x00000000 0x00000000 0x00000000 0x00000000

0x3300C030 0xBEAD2000 0x60001147 0x51EFA1AF 0x9114F000

. . .

0x3300C0C0 0x5EAF00D5 0x00000000 0x00000000 0x0001FFFF

0x3300C0D0 0xBEEEEEEF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF

0x3300C0E0 0xFFFFFFFF 0xBEEEEEEE 0xEEEEEEEE 0xEEEEEEEF

https://cs162.org/static/exams/sp21/mem.pdf

Exam generated for <EMAILADDRESS> 21

Address 0x0 0x4 0x8 0xC

0x3300C0F0 0x10101010 0x20202020 0x30303030 0x40900000

. . .

0xA55A0120 0xE32BFFFE 0xE32C0000 0xE32C0002 0xE32C0004

0xA55A0130 0xE32C0006 0xE32C0008 0xE32C000A 0xE32C000C

0xA55A0140 0x007A19E1 0x0024CE00 0x04S93C70 0x0BADBEEF

0xA55A0150 0xACACACAC 0xACACACAC 0x00020004 0x00010004

. . .

0xA55A01A0 0xF000000D 0x00000000 0xC0CAC01A 0x00011000

0xA55A01B0 0xABABABAB 0xABABABAB 0x0000F045 0x01F0FC35

0xA55A01C0 0xA55A01C0 0xA55A01C4 0xA55A01C8 0xA55A01CC

0xA55A01D0 0x00000000 0x0000000C 0x08C48348 0x0005A1AD

. . .

0xA55A0240 0xE32C0000 0x30EC8348 0xE5894855 0x48D07589

0xA55A0250 0x48DC7D89 0x89480000 0x0AAA058D 0x000ACB05

0xA55A0260 0x8D48F845 0x558B48F0 0xBEEFBEEF 0xD60948F8

0xA55A0270 0x48C68948 0xE8000000 0x00000000 0x0BADBEEF

. . .

0xB33A00C0 0x01331330 0x00000000 0xBEEFBEEF 0x1A1A1A1A

0xB33A00D0 0x00000000 0xE32C0000 0x70000000 0x00000002

0xB33A00E0 0x00010000 0x00030012 0x5EAF000D 0xBEEFBEEF

0xB33A00F0 0x00000000 0x00000000 0x00000000 0xACACACAC

Set LRU Bit Tag for Entry 0 Tag for Entry 1

0 1 0x3300C0

1 0 0xA55A01 0x800230

2 1 0xB55A03 0xB55A04

3 0

4 1 0xA55A02 0x800113

5 0 0x800010

6 0 0x3300C0 0x840112

7 1 0x70F3F0

You may also find this table of hex to binary conversions helpful:

Hex 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Exam generated for <EMAILADDRESS> 22

(a) (15.0 points)

Virtual
Address

Physical Address (1
pt ea.)

Set (0.5 pt ea.) Hit? (0.5 pt ea.) Value (1 pt ea.)

0x840110C0 (a) 6 Hit 0xBEEFBEEF

0x00F003DC (b) 6 Miss 0x0005A1AD

0x00F00324 (c) (d) (e) (f)

0x840110C0 (g) 6 Hit 0xBEEFBEEF

0x84011208 0x3300C008 (h) (i) (j)

0x840112D0 0x3300C0D0 (k) (l) (m)

0x00F00040 0xA55A0240 (n) (o) (p)

0x00F00070 0xA55A0270 (q) (r) (s)

0x00000164 (t) 3 Miss 0xC001C142

i.

(a)

ii.

(b)

iii.

(c)

iv.

(d)

v.

(e)

Hit

Miss

Exam generated for <EMAILADDRESS> 23

vi.

(f)

vii.

(g)

viii.

(h)

ix.

(i)

Hit

Miss

x.

(j)

xi.

(k)

xii.

(l)

Hit

Miss

Exam generated for <EMAILADDRESS> 24

xiii.

(m)

xiv.

(n)

xv.

(o)

Hit

Miss

xvi.

(p)

xvii.

(q)

xviii.

(r)

Hit

Miss

xix.

(s)

Exam generated for <EMAILADDRESS> 25

xx.

(t)

Exam generated for <EMAILADDRESS> 26

(b) (5.0 points)

Suppose we were to entirely remove the TLB from the system.

i. (2.0 pt)

Would you expect the total number (not the rate) of cache misses to increase, decrease, or be unaffected
by the change?

Increase

Decrease

No Change

ii. (3.0 pt)

Why so?

Exam generated for <EMAILADDRESS> 27

(c) (6.0 points)

Imagine if you were to scale the capacity of the cache by a factor of 4, from 256 bytes to 1 KiB, while
leaving all other parameters (associativity, replacement policy, etc.) unchanged. Suppose two processes
(different virtual -> physical mappings) execute on the CPU one after another, resulting in the following
two virtual/physical address combinations being present in the cache simultaneously:

Process Virtual Address Physical Address

A 0x400000F4 0x700000F4

B 0x5594FFF0 0x700000F0

i. (3.0 pt)

What problem(s) could this cause?

ii. (3.0 pt)

Could this problem also occur in the 256-byte VIPT cache described above? Why so or why not?

Exam generated for <EMAILADDRESS> 28

5. Reference Sheet

/*********************************** Threads ***********************************/
int pthread_create(pthread_t *thread, const pthread_attr_t *attr,

void *(*start_routine) (void *), void *arg);
int pthread_join(pthread_t thread, void **retval);
int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr);
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);
int sem_init(sem_t *sem, int pshared, unsigned int value);
int sem_post(sem_t *sem); // up
int sem_wait(sem_t *sem); // down
int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *cond_attr);
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);

/********************************** Processes **********************************/
pid_t fork(void);
pid_t wait(int *status);
pid_t waitpid(pid_t pid, int *status, int options);
int execv(const char *path, char *const argv[]);

/******************************* High-Level I/O ********************************/
FILE *fopen(const char *path, const char *mode);
FILE *fdopen(int fd, const char *mode);
size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);
size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream);
int fclose(FILE *stream);

/******************************** Low-Level I/O ********************************/
int open(const char *pathname, int flags);
ssize_t read(int fd, void *buf, size_t count);
ssize_t write(int fd, const void *buf, size_t count);
off_t lseek(int fd, off_t offset, int whence);
int dup(int oldfd);
int dup2(int oldfd, int newfd);
int pipe(int pipefd[2]);
int close(int fd);

Exam generated for <EMAILADDRESS> 29

No more questions.

