
 Page 1/26

University of California, Berkeley
College of Engineering

Computer Science Division  EECS
Spring 2019

John Kubiatowicz

Midterm III
May 2nd, 2019

CS162: Operating Systems and Systems Programming

Your Name:

Your SID:

TA Name:

Discussion Section
Time:

General Information:
This is a closed book exam. You are allowed 3 pages of notes (both sides). You have 2 hours to
complete as much of the exam as possible. Make sure to read all of the questions first, as some of the
questions are substantially more time consuming. Write all of your answers directly on this paper.
Make your answers as concise as possible. On programming questions, we will be looking for
performance as well as correctness, so think through your answers carefully. If there is something
about the questions that you believe is open to interpretation, please ask us about it!

Problem Possible Score

1 18

2 17

3 24

4 10

5 31

Total 100

CS 162 Spring 2019 Midterm III May 2nd, 2019

 Page 2/26

[This page left for ]

3.14159265358979323846264338327950288419716939937510582097494459230781640628620899

CS 162 Spring 2019 Midterm III Your SID:__________________________ May 2nd, 2019

 Page 3/26

Problem 1: True/False [18 pts]
Please EXPLAIN your answer in TWO SENTENCES OR LESS (Answers longer than this may not
get credit!). Also, answers without an explanation GET NO CREDIT.

Problem 1a[2pts]: A single file server can be constructed with a Byzantine Agreement algorithm for
file commit such that clients are protected against break-ins to the server.

 ⬜ True ⬜ False
 Explain:

Problem 1b[2pts]: When using RPC to communicate over the network, a client and host/server could
share arguments and return values even if the communicating entities have processors with different
“endianness” (i.e. x86 vs MIPS).

 ⬜ True ⬜ False
 Explain:

Problem 1c[2pts]: When producing a queueing model of some system (such as a filesystem) and
the distribution of request arrival times is unknown, the best estimate is to use a deterministic
distribution.

 ⬜ True ⬜ False
Explain:

Problem 1d[2pts]: Direct Memory Access (DMA) refers to a situation in which the processor
bypasses the cache to access DRAM directly.

 ⬜ True ⬜ False
 Explain:

Problem 1e[2pts]: The Bitcoin blockchain could be used for distributed decision making.

⬜ True ⬜ False
 Explain:

CS 162 Spring 2019 Midterm III May 2nd, 2019

 Page 4/26

Problem 1f[2pts]: The acronym “RAID” refers to RApid Insect Death, and is a general term for a
whole class of insecticides.

⬜ True ⬜ False
 Explain:

Problem 1g[2pts]: In the Fast File System (FFS) without a buffer cache, the number of disk
accesses to retrieve the first byte of a file is always less than the number of disk accesses to retrieve
the last byte of a file.

⬜ True ⬜ False
 Explain:

Problem 1h[2pts]: The End-to-End principle suggests that the best way to achieve error-free
communication is to provide 100% reliability at every hop in the network through error correction
coding and retransmission.

⬜ True ⬜ False
 Explain:

Problem 1i[2pts]: The Journal in a “Journaled file system” has no benefit unless it can be placed
on a separate physical disk from the filesystem.

⬜ True ⬜ False
 Explain:

CS 162 Spring 2019 Midterm III Your SID:__________________________ May 2nd, 2019

 Page 5/26

Problem 2: Multiple Choice [17pts]
Problem 2a[2pts]: In consistent hashing, if we have N servers, how many servers must we move
keys from when we add a server (choose one):

A: ⬜ one (1).

B: ⬜ two (2).

C: ⬜ log(N).

D: ⬜ N

Problem 2b[2pts]: Memory-mapped I/O is (choose one):

A: ⬜ A hardware mechanism for assigning physical memory addresses to devices such that
processor read and write operations to these addresses become commands to devices.

B: ⬜ A software protocol that constructs a coherent distributed shared memory between multiple
physical nodes, allowing communication between nodes to occur as reads and writes to the
shared memory (address) space.

C: ⬜ A technique for communication between processes using the mmap() system call. As a
result, processes can interact via reads and writes to shared memory addresses.

D: ⬜ A security mechanism for I/O devices that that prevents user-mode applications from
directly accessing these devices, forcing device access to go through the system call
interface.

Problem 2c[2pts]: What is two-phase commit (2PC) and what problem does it solve? (choose one):

A: ⬜ Two-phase commit is an algorithm that can help to make progress on a distributed consensus
problem even in the presence of malicious nodes.

B: ⬜ Two-phase commit is used in single-server databases to ensure serializability of
simultaneous transactions by controlling transaction commit order.

C: ⬜ Two-phase commit is a distributed decision making algorithm that makes sure that all
participants eventually come to the same decision whether to commit or abort – despite
intermittent crashes and restarts of participants.

D: ⬜ Two-phase commit is a distributed decision making algorithm that is valuable because it
can continue to make forward progress despite crashed or unavailable participants.

CS 162 Spring 2019 Midterm III May 2nd, 2019

 Page 6/26

Problem 2d[2pts]: What is Network Address Translation (NAT)? (Select One):

A: ⬜ A mechanism that is part of the Domain Name System (DNS) for handling website names
that are not in English.

B: ⬜ A mechanism for load-balancing incoming queries among a set of servers in a warehouse
(cloud) computing system.

C: ⬜ A mechanism for sharing one or more external IP addresses amongst a larger set of local
(non-routable) IP addresses.

D: ⬜ A mechanism whereby a local network router can handle outgoing messages by forwarding
them to an authoritative router that participates the BGP routing protocol.

Problem 2e[3pts]: Which of the following are true about modern hard disks? (Mark all that apply):

A: ⬜ They have an independent disk head on every surface of every platter. As a result, the disk
can simultaneously read or write from different tracks on different platters.

B: ⬜ Some of them gain bit density by overlapping tracks.

C: ⬜ They have internal caching, allowing them to read a whole track at a time.

D: ⬜ They have a lower bit density on the outside tracks from the inside tracks (because the
surface of the outside tracks move under the disk head faster than that of the inside tracks).

E: ⬜ Their internal controllers can queue requests and perform variants of the elevator algorithm
without consulting the operating system.

F: ⬜ They support bit densities  1 Exabit (1015)/square inch

Problem 2f[3pts]: Little’s Theorem has the following properties (Mark all that apply):

A: ⬜ It applies only to memoryless arrival distributions.

B: ⬜ It says that the average number of jobs in the system is equal to the average arrival rate of
jobs multiplied by the average length of time that a job stays in the system.

C: ⬜ It shows why the average length of time spent in a queue grows without bound as the system
utilization approaches 100%.

D: ⬜ It applies only to systems in equilibrium.

E: ⬜ It can be used to compute the average time spent in a queue, given the average length of the
queue.

F: ⬜ None of the above.

CS 162 Spring 2019 Midterm III Your SID:__________________________ May 2nd, 2019

 Page 7/26

Problem 2g[3pts]: The Berkeley FFS has the following properties (Mark all that apply):

A: ⬜ It changed the inode format from the BSD 4.1 file system to better reflect the overwhelming
presence of small files in a typical UNIX filesystem.

B: ⬜ It placed all the inodes together on the inner tracks of the disk for better performance.

C: ⬜ It reserved 10% of the blocks to ensure that new files could get sequential groups of blocks
for better read performance.

D: ⬜ It performed skip-sector allocation of blocks to prevent processor delays during reading
from missing blocks and forcing a complete rotation for each block read.

E: ⬜ It placed the inodes and blocks for files within a directory close to the blocks and inodes for
the directory to improve performance.

F: ⬜ It introduced a B-tree format for directories in order get better lookup performance for
directories with large numbers of files.

CS 162 Spring 2019 Midterm III May 2nd, 2019

 Page 8/26

Problem 3: Pintos/File Systems [24pts]
Consider the following inode_disk and indirect_block struct similar to what is in Pintos. Suppose
sectors are 512 bytes.

struct inode_disk {
 block_sector_t direct[12];
 block_sector_t indirect;
 block_sector_t triply_indirect; // Note that this is a triply
 // and that there is no doubly!
 size_t size;
 void unused[113];
};

struct indirect_block { // doubly and triply indirect blocks look like this
 block_sector_t block_nums[128];
}

Problem 3a[2pts]: What is the maximum file size supported by this design? Leave your answer
unsimplified in the box:

Problem 3b[4pts]: How many sectors of each type are required to represent a maximum sized file
in this design? Leave your answer unsimplified in the box:

Data blocks:

Indirect blocks:

Doubly indirect blocks:

Triply indirect blocks:

CS 162 Spring 2019 Midterm III Your SID:__________________________ May 2nd, 2019

 Page 9/26

Problem 3c[6pts]: Suppose that we have a file that is represented using the inode structures of (3a)
and (3b) and that the current size of the file is 12 * 512 bytes long. We now want to write 512
characters to the end of this file. You may use the following functions:

void block_read(void *buffer, block_sector_t block_num);
void block_write(void *buffer, block_sector_t block_num);
block_sector_t block_allocate();

The block sector corresponding to the file's inode_disk struct is 3:

block_sector_t FILE_INODE_BLOCK = 3;

Fill in the blanks in the following function such that after running this function, 512 characters are
written to this file and persisted. Assume that the file is exactly 12 blocks long already. You may
not need all of the blanks, but may only have 1 semicolon per line.

void Append512Chars () {
 struct inode_disk inode;

 struct indirect_block indirect_block;
 indirect_block.block_nums[0] = block_allocate();
 void buffer[512];
 memset(buffer, 'a', 512);

}

CS 162 Spring 2019 Midterm III May 2nd, 2019

 Page 10/26

Suppose that we build our disk subsystem to handle a high rate of I/O by coupling many disks
together. Properties of this system are as follows:

 Has a total of 24 disks, each of which is 2TB in size
 Uses disks that rotate at 12,000 RPM, have a data transfer rate of 81.92 MBytes/s (for each

disk), and have an 4.5 ms average seek time, 4KiB sector size
 Has a SCSI interface with an 600s controller command time. Assume that a group of

consecutive sectors can be fetched with a single request.
 Has a file system that groups sectors into 32KiB blocks
 Is limited only by the disks (assume that no other factors affect performance).

Each disk can handle only one request at a time, but each disk in the system can be handling a
different request. The data is not striped (all I/O for each request has to go to one disk).

EACH OF THE FOLLOWING ANSWERS SHOULD BE SIMPLIFIED TO SINGLE NUMBERS.
HOWEVER, YOU MUST SHOW YOUR WORK TO CREDIT.

Problem 3d[4pts]: What is the average service time to retrieve a single disk block from a random
location on a single disk, assuming no queuing time (i.e. the unloaded request time)? Hint: there are

four terms in this service time!

Problem 3e[2pts]: Assume that the OS is not particularly clever about disk scheduling and passes
requests to the disk in the same order that it receives them from the application (FIFO). If the
application requests are randomly distributed over a single disk, what is the bandwidth (bytes/sec)
that can be achieved?

Problem 3f[2pts]: Suppose that the application has requests outstanding for all disks (but they are
still randomly distributed, handed FIFO to disks), what is the maximum number of I/Os per second
(IOPS) for the whole disk subsystem (an “I/O” here is a block request)?

CS 162 Spring 2019 Midterm III Your SID:__________________________ May 2nd, 2019

 Page 11/26

Problem 3g[4pts]: Treat the entire system as an M/M/m queue (that is, a system with m servers
rather than one), where each disk is a server. All requests are in a single queue. Assume that the
disk system receives an average of 2250 I/O random requests per second. For simplicity, assume
that any disk can service any request. Assuming FIFO scheduling by the OS again, what is the
mean response time of the system? You might find the following equation for an M/M/m queue
(where any server can handle any request from the queue) useful:

m

m

server

server

Time

/Time
1)(lization Server Uti  

 












1

TimeTime serverqueue
m

CS 162 Spring 2019 Midterm III May 2nd, 2019

 Page 12/26

[This Page Intentionally Left Blank]

CS 162 Spring 2019 Midterm III Your SID:__________________________ May 2nd, 2019

 Page 13/26

Problem 4: Global Potpourri [10pts]

Problem 4a[4pts]: Suppose that you have a dedicated satellite connection between two points on
the earth. The satellite will be in a geostationary orbit (at an altitude of 35,786 km). Assume that
we will be using TCP over this connection. Assume that the satellite forwards all bits after a 100ms
latency (fully pipelined, since there is no routing in the satellite). Also assume that we can use
“jumbo TCP frames” with an MTU of 9000 bytes.

Parameter Value
Speed of light 3 105 km/s
Transmission Bandwidth 5×109 bits/s
TCP/IP header size 40 bytes
MTU 9000 bytes
Data payload for ACK (has TCP/IP header) 0 bytes

Assume that computational time at the receiver (copying, code execution, etc) is zero. Accounting
only for transmission time, what should the sender’s TCP window size be to achieve maximum
bandwidth? Assume no packets are dropped. Show all of your work (no credit for a single number).
Hint: don’t forget that the TCP/IP header is overhead.

If you do not have a calculator, you may leave the result as a simple mathematical expression.
However, PLEASE PLUG IN ALL NUMBERS AND SPECIFY FINAL UNITS!

35,786 Kilometers35,786 Kilometers 35,786 Kilometers35,786 Kilometers 35,786 Kilometers35,786 Kilometers

CS 162 Spring 2019 Midterm III May 2nd, 2019

 Page 14/26

Problem4b[3pts]: In class, we discussed the Chord distributed key-value store, which uses
Consistent Hashing to store data among a large set of servers. Explain how key-value pairs are
distributed among servers in Chord and how is it possible for the ‘get(key)’ process to return the
value associated with ‘key’ in O(log(n))where n is the number of servers.

Problem 4c[3pts]: Suppose that we have storage servers in machine rooms on every continent and
wish to use them to provide “deep archival” service (the ability to recover data with extremely high
probability despite a variety of global disasters). Suppose further that we only have enough total disk
space for no more than a factor of four (x4) blowup in the size of the data. What can we do that
would be (much) better than simply making four copies of every piece of data? (Hint: your answer

has something to do with encoding and placement).

CS 162 Spring 2019 Midterm III Your SID:__________________________ May 2nd, 2019

 Page 15/26

Problem 5: Remote File Server [31 pts]

In this problem, you will design a simple file server and make it efficient by using a pool of threads
to handle the file service. The basic idea is illustrated by the diagram below:

Here, the client sets up a TCP socket connection with the server on port 4400, then sends one or
more file names separated by “,” and/or newline characters. Finally, the file reader thread sends the
contents of the specified file(s). The client terminates by sending a blank line.

Note: READ THE PROBLEM FIRST AND REVIEW DOCUMENTATION AS NEEDED! YOU
CAN SCAN THROUGH FUNCTION DEFINITIONS QUICKLY FIRST TIME THROUGH.

We are going to build the server using the C sockets interface coupled with streaming functions.
Some possibly helpful operations for establishing server-side connections are as follows:

Function Usage

Create a socket for
further use. Returns file
descriptor.

int sockfd = socket(int family, int type, int prot);

sockfd: Returned file descriptor
family: AF_INET, AF_INET6
type: SOCK_STREAM (i.e. tcp), SOCK_DGRAM (i.e. UDP)
prot: 0

Bind a name (i.e. IP
address and port) to a
socket

int err = bind(int sockfd, struct sockaddr *addr,
 socklen_t addrlen);

err: 0 (success), -1 (error)
sockfd: Socket file descriptor
addr: Address to bind
addrlen: length of address structure

Listen on socket for
incoming requests.
Starts listening process,
then returns.

int err = listen(int sockfd, int backlog);

err: 0 (success), -1 (error)
sockfd: Socket file descriptor
backlog: Maximum number of queued requests

Accept connection on
listening socket.
Blocks until available
connection.

int confd = accept(int sockfd, struct sockaddr *addr,
 socklen_t *addrlen);

confd: >0 (returned connection), -1 (error)
sockfd: Listening Socket
addr: Structure for address of remote connection
 (can be null)
addrlen: Length of address structure (addr)

File
Reader
Thread

Server
Dispatch

Client

(1)Request Connection on
 port 4400

(3) Request: /usr/homes/joe/file,/etc/passwd

(4) Response: File Contents

(2)Forward
 Socket

CS 162 Spring 2019 Midterm III May 2nd, 2019

 Page 16/26

Internet addresses are specified in address structures (of type struct sockaddr_in) in the following
format:

struct sockaddr_in { /* IPv4 socket address */
 sa_family_t sin_family; /* address family: AF_INET */
 in_port_t sin_port; /* port in network byte order */
 struct in_addr sin_addr; /* internet address */
 ... /* other padding to match size of struct sockaddr */
};

/* Internet address. */
struct in_addr {
 uint32_t s_addr; /* address in network byte order */
};

All values must be specified in network byte order. The sin_family component is always set to
AF_INET. The s_addr component of sin_addr can either be set to a special value INADDR_ANY,
which means bind to “any” local address or set using a special network byte order function. The
port must be set in network order as well, using the htons(). For example, to set up an IP address
structure pointing at IP address 192.168.1.1 on port 80 we could do:

struct sockaddr_in my_addr;
bzero((char *)&my_addr,sizeof(my_addr)); /* Zero out unused bytes*/

my_addr.sin_family = AF_INET;
my_addr.sin_port = htons(80);
/* Set IPv4 address field from a “dot-notation” address. */
inet_aton(“192.168.1.1”, &(my_addr.sin_addr.s_addr));

An alternative that is useful for servers is to bind to all local addresses (but a specific port) by using
a wildcard address as follows:

/* Alternate: bind to all local addresses (useful for servers) */
my_addr.sin_family = AF_INET;
my_addr.sin_port = htons(80);
my_addr.sin_addr.s_addr = INADDR_ANY;

Finally, note that pointers to addresses of type “struct sockaddr_in *” are cast to the
generic type “struct sockaddr *” for input to socket functions such as bind().

CS 162 Spring 2019 Midterm III Your SID:__________________________ May 2nd, 2019

 Page 17/26

Other functions that might be useful for you:

Function Usage
Wrap file descriptor
into a stream so that
streaming functions
can be used.

FILE *mystream = fdopen(int fd, char *mode);

fd: Input file descriptor
mode: “r” (reading), “r+” reading/writing

Open a file as a stream
for reading and/or
writing.

FILE *mystream = fopen(char *path, char *mode);

path: Pathname to file
mode: “r” (reading), “r+” reading/writing

Close stream

int err = fclose(FILE *mystream);

err: 0 (success), -1 (error)
mystream: Stream to close

Read from stream

size_t num = fread(void *ptr, size_t size,
 size_t nmemb, FILE *stream);

num: 0 (error or end of file)
 >0 (number of bytes read)
size: size in bytes of items to be read
nmemb: MAX number of items (of size bytes) to read
stream: Input stream

Write to stream

size_t num = fwrite(void *ptr, size_t size,
 size_t nmemb, FILE *stream);

num: 0 (error or end of file)
 >0 (number of bytes written)
size: size in bytes of items to be writen
nmemb: Number of items (of size bytes) to write
stream: Output stream

Read Line from stream
into buffer.

char *line = fgets(char *buf, int size,
 FILE *stream);

line: 0 (EOF or error)
 <>0: pointer to null-terminated string
 Including the newline character (’\n’).
buf: Char buffer for storing result
size: Buffer size. Output will be <= size-1 chars.

Parse input string for
tokens. First call sets
up parsing and returns
first token, subsequent
calls return following
tokens

char *nexttok = strtok_r(char *instring, char *delim,
 char **saveptr);

nexttok: 0 (no remaining tokens)
 <>0: pointer to null-terminated string
instring: 0 (continue parsing previous string)
 <>0: start new parsing job at instring
delim: String with delimiting characters
saveptr: Pointer to char pointer for state storage.
 This item initialized when instring <> 0
 and used when instring == 0.

CS 162 Spring 2019 Midterm III May 2nd, 2019

 Page 18/26

Code Version #1: First, we are going to make a version of the server that doesn’t use threads.
Don’t worry about error conditions and assume that constants such as MAXNAME are defined
elsewhere. Our code looks like this.

 main() { /* don’t worry about how main thread starts */
 1. int newsockfd;
 2. FILE *newsockstr;
 3. char filenamebuf[MAXNAME], *nextinputline, *nextfn, *tokstate;
 4. FILE *my_file;
 5. char mybuff[BUFSIZE];
 6. int numchars;

 7. struct sockaddr_in serv_addr; /* listen socket address */
 8. int lstnsockfd; /* listen socket file descriptor */
 9. lstnsockfd = socket(AF_INET, SOCK_STREAM, 0);
10. bzero((char *)&serv_addr, sizeof(serv_addr);

11. /* Bind address to socket */
12. /* Setup Server Socket to accept connections */

 while (true) {
13. newsockfd = /* Get next socket connection */
14. newsockstr = fdopen(newsockfd, “r+”); /* fd=>stream*/
15. while (nextinputline = /* Get input line */) {
16. /* Extract next file name delimited by \r,\n,\t or ,*/
17. nextfn = strtok_r(nextinputline,”\r\n\t, ”,&tokstate);
18. do {
19. if (my_file = /* open file for reading */) {
20. while ((numchars=fread(mybuff,1,BUFSIZE,my_file))> 0) {
21. fwrite (mybuff, 1, numchars, newsockstr);
22. }
23. fclose(my_file);
24. }
25. } while (nextfn=strtok_r(0,”\r\n\t, ”,&tokstate));
26. }
27. fclose(newsockstr);
 }
 }

Problem 5a[4 pts]: Assuming that this server listens on port 4400, complete missing code for
Line #11, above. This should be 4 lines of code.

CS 162 Spring 2019 Midterm III Your SID:__________________________ May 2nd, 2019

 Page 19/26

Problem 5b[4pts]: Complete missing code for Lines #12, 13, 15, and 19. None of these should be
more than 1 line of code.

Line #12:

Line #13:
newsockfd =

Line 15:
while (nextinputline =) {

Line 19:
if (my_file =) {

Code Version #2: A big problem with code version #1 is that it can only process one request at a
time. Here is a sketch of our code (don’t worry about ordering between dispatch thread and worker
thread in the source file):

 // Server Dispatch Thread --------------------------------------
 main() {
28. /* Setup Server Code (same as Lines #7-12 in Version #1) */
29. while(true) {
30. pthread_t thread_id; /* Will ignore this */

31. /* Server Dispatch Code */
32. }
 }

 // Worker Thread Code --
33. void *fileworker(void *arg) {
34. FILE *newsockstr = (FILE *)arg;

35. /* Worker Thread Code */

36. return 0;
37. }

CS 162 Spring 2019 Midterm III May 2nd, 2019

 Page 20/26

Problem 5c[6pts]: Finish writing the above code so that it will produce a multithreaded server.
The server dispatch code should be as short as possible so that the work of interacting with a client

is mostly within the fileworker() thread. The following pthread library function will be
useful:

Function Usage

Create new thread

int pthread_create(pthread_t *thread,
 pthread_attr_t *attr,
 void *(*start_routine)(void *),
 void *arg);

thread: Space for thread identifier
attr: Pointer to attributes. 0=>default
start_routine: Pointer to thread run routine
arg: Pointer to argument

Note that every comment in the above sketch may represent one or more lines of code. When you
have any lines of code that are duplicated from Version #1, simply use line numbers, for instance
“Line 1” to reuse line #1 or “Lines 7-12” to duplicate lines 7-12. You must reuse every numbered

line from Version #1 (except for lines #7-12 which are already included). Don’t forget the casts to

and from (void *) for the pthread_create interface.

Code to fill line 31:

Code to file line 35:

CS 162 Spring 2019 Midterm III Your SID:__________________________ May 2nd, 2019

 Page 21/26

Code Version #3: For efficiency, we would like to make sure than only NUMTHREADS threads
are ever running at any one time. To do this, we will pre-construct the threads, then hand them
requests from a queue. This is called using a “Thread Pool”.
First, we must construct an appropriate queue. What we want is an atomic queue that can handle
multiple simultaneous enqueue/dequeue operations with the following functions:

 /* Create new aqueue */
 atomqueue *new_atomqueue();

 /* Enqueue object on atomic queue */
 void atomEnqueue(atomqueue *aqptr, void *obj); /* Enqueue obj*/

 /* remove next object or sleep until object ready*/
 void *atomDequeue(atomqueue *aqptr);

Note that the important aspect of this implementation is that a call to atomDequeue() will sleep on
an empty queue, not return a null entry. Further, we want to make sure that many threads can
simultaneously call atomEnqueue() and atomDequeue() without fear of an incorrect result.

We are going to construct this queue from a non-atomic (non-thread-safe) queue using a mesa-style

Monitor. The following pthreads functions will be helpful:

Function Usage

Pthread mutex
functions.

pthread_mutex_t lock; /* Declare */
pthread_mutex_init(&lock,NULL); /* Init */
pthread_mutex_lock(&lock); /* Lock */
pthread_mutex_unlock(&lock); /* Unlock */

Pthread conditional
variable functions.

pthread_cond_t CV; /* Declare */
pthread_cond_init(&CV); /* Init */
pthread_cond_wait(&CV, &lock); /* Wait */
pthread_cond_signal(&CV); /* Signal */

Assume that we have non-atomic methods for a queue as follows:

 queue *new_queue(); /* Create new queue */

 int checkqueue(queue *myqueue); /* Number entries on queue*/

 void enqueue(queue *myqueue, void *obj); /* Never fails */

 void *dequeue(queue *myqueue); /* remove next object or
 return null if empty */

CS 162 Spring 2019 Midterm III May 2nd, 2019

 Page 22/26

Here is a sketch of the code:
38. typedef struct aqueue {
39. queue *myqueue;
40. pthread_mutex_t lock;
41. pthread_cond_t CV;
42. } atomqueue;

43. atomqueue *newatomqueue() {
44. atomqueue* aqptr =(atomqueue *)malloc(sizeof(atomqueue));
45. aqptr->myqueue = new_queue(); /* Create queue */
46. pthread_mutex_init(&aqptr->lock);
47. pthread_cond_init(&aqptr->CV);
48. return aqptr;
49. }

50. void atomEnqueue(atomqueue *aqptr, void *obj) {
51. /* Synchronization Entry Code */
52. enqueue(aqptr->myqueue, obj)
53. /* Synchronization Exit Code */
54. }

55. void *atomDequeue(atomqueue *aqptr) {
56. /* Synchronization Entry Code */
57. void *result = dequeue(aqptr->myqueue);
58. /* Synchronization Exit Code */
59. return result;
60. }

Problem 5d[8pts]: Fill in the missing pieces of the code. Each of lines #51, #53, #56, and #58 can
have more than one line of code – but no more than 4 lines. Keep answer really short! Most of
these have one or two lines. Credit will only be given for short answers.
Code for line #51:

Code for line #53:

Code for line #56:

Code for line #58:

CS 162 Spring 2019 Midterm III Your SID:__________________________ May 2nd, 2019

 Page 23/26

Finally, our version #3 thread-pool code might appear as follows. Recall that, for efficiency, we
would like to make sure than only NUMTHREADS threads are ever running at any one time. To do
this, we will pre-construct the threads, then hand them requests from a queue. This is called using a
“Thread Pool”. A server dispatch thread will accept connections and put them on the queue.

 // Server Dispatch Thread --------------------------------------
 main() {
61. atomqueue *myqueue = newatomqueue();
62. pthread_t thread_id; /* Will ignore this */
63. for (int count = 0; count < NUMTHREADS; count++)
64. /* Start one thread-pool thread */

65. /* Setup Server Code (same as Lines #7-12 in Version #1) */
66. while(true) {
67. /* Server Dispatch Code */
68. }
 }

 // Worker Thread Code --
69. void *fileworker(void *arg) {
70. atomqueue *myqueue = (atomqueue *)arg;

71. /* Worker Thread Code */

72. return 0;
73. }

Problem 5e[9pts]: Fill in the missing pieces of the above code. Missing chunks of code are in lines
#64, #67, and 71 above. These can represent more than one line of code. Keep answers as short as
possible. Once again, you must use every numbered line from Version #1 (except for lines #7-12

which are already included).

Code to fill in line #64:

Code to fill in line #67:

Code to fill in line #71:

CS 162 Spring 2019 Midterm III May 2nd, 2019

 Page 24/26

[This Page Intentionally Left Blank]

CS 162 Spring 2019 Midterm III Your SID:__________________________ May 2nd, 2019

 Page 25/26

[Scratch Page: Do not put answers here!]

CS 162 Spring 2019 Midterm III May 2nd, 2019

 Page 26/26

[Scratch Page: Do not put answers here!]

