
CS 162 Spring 2017, 1st Midterm Exam February 27, 2017

 Page 1/13

University of California, Berkeley

College of Engineering

Computer Science Division – EECS

Spring 2017 Ion Stoica

First Midterm Exam
February 27, 2017

CS162 Operating Systems

Your Name:

SID AND 162 Login:

TA Name:

Discussion Section

Time:

General Information:
This is a closed book and one 2-sided handwritten note examination. You have 80 minutes to

answer as many questions as possible. The number in parentheses at the beginning of each

question indicates the number of points for that question. You should read all of the questions

before starting the exam, as some of the questions are substantially more time consuming.

Write all of your answers directly on this paper. Make your answers as concise as possible. If there

is something in a question that you believe is open to interpretation, then please ask us about it!

 Good Luck!!

QUESTION POINTS ASSIGNED POINTS OBTAINED

1 18

2 20

3 22

4 14

5 16

6 10

TOTAL 100

CS 162 Spring 2017, 1st Midterm Exam February 27, 2017

 Page 2/13

P1 (18 points total) True/False and Why? CIRCLE YOUR ANSWER. For each

question: 1 point for true/false correct, 2 point for explanation. An explanation cannot

exceed 2 sentences.

a) You can use a socket to communicate between two processes on the same

machine.

TRUE FALSE

Why?

A socket is an interface for interprocess communication. It is irrelevant if the two

processes are on remote computers, or on the same one.

b) If you wanted to close one thread in a multithreaded process, the best choice

would be to call exit(0).

TRUE FALSE

Why?

exit(0) will exit the entire process, which will also close all the other threads in

the process.

c) Incrementing an integer value can always be performed atomically.

TRUE FALSE

Why?

Increment requires a load, add, store that may be split.

CS 162 Spring 2017, 1st Midterm Exam February 27, 2017

 Page 3/13

d) Locks can be implemented by leveraging interrupts on single processor computers.

TRUE FALSE

Why?

Just disable interrupts before acquiring and releasing locks.

e) Accessing a variable stored in a thread’s individual stack is always thread-safe.

TRUE FALSE

Why?

Could pass the address of this variable to another thread.

f) Switching the order of two P() semaphore primitives can lead to deadlock (recall

that sem.P() decrements semaphore value, “sem”, and blocks if it is 0).

TRUE FALSE

Why?

If one P() is used to acquire a lock, and another one to wait(), we can get deadlock

if the wait() happens in the critical section without releasing the lock (see slide 1,

in lecture 9).

CS 162 Spring 2017, 1st Midterm Exam February 27, 2017

 Page 4/13

P2 (20 points) C Programming and Sockets: The code below implements a trivial echo

server that reads arbitrary data into reqbuf from a client on consockfd socket descriptor,

and then sends this data back to the client on the same socket descriptor (we ignore

disconnections and other socket errors).

1	void	server(int	consockfd)	{

2			char	reqbuf[MAXREQ];

3			int	n;

4			while	(1)	{																			

5						n	=	read(consockfd,	reqbuf,	MAXREQ);	/*	Recv	*/

6						n	=	write(consockfd,	reqbuf,	strlen(reqbuf));	/*	echo*/

7			}

8	}

Please recall that the last argument of read(), MAXREQ, is the maximum number of

bytes it can read (usually the size of reqbuf), and it returns the number of bytes it reads,

n, which can be smaller than MAXREQ.

Please answer the following questions. Answering a question may require you to add,

delete, or modify the code above. If that’s the case, please specify the # of the line being

modified or deleted. If you need to add code, please specify the #’s of the lines between

which the code needs to be added (e.g., “add code between lines #4 and #5”).

a) (6 points) Assume the client always sends strings, i.e., ‘\0’ terminated sequence

of characters. What can go wrong in the previous code? Provide a fix by

specifying the changes to the above code.

The received string might not be null terminated which can result into sending garbage,

as strlen(reqbuf) may exceed MAXREQ size in this case. The server might also crash as

it might try to read from unallocated addresses.

Solution 1:
Between lines 4-5: memset(reqbuf,	0,	MAXREQ);

Line #5: n	=	read(consockfd,	reqbuf,	MAXREQ-1);	/*	Recv	*/

Line #6: n	=	write(consockfd,	reqbuf,	strlen(reqbuf)	+	1);	/*	Add	NULL	

terminator	*/

Solution 2:
Line #6: n	=	write(consockfd,	reqbuf,	n);	

CS 162 Spring 2017, 1st Midterm Exam February 27, 2017

 Page 5/13

b) (6 points) Assume the client sends a buffer that can contain ‘\0’ characters. What

can go wrong in the previous code? Provide a fix by specifying the changes to the

above code.

The problem is that if there is a ‘\0’ character in the message, the server will not echo the

characters beyond it.

Line #6: n	=	write(consockfd,	reqbuf,	n);	/*	echo*/

c) (8 points) Assume the server needs to exit when receiving the string “quit”. Re-

write the server() code to implement this functionality.

This solution finds “quit” anywhere in the message and works across messages, i.e., if

one message ends with “qu”, and the next one starts with “it”, the server will exit.

void	server(int	consockfd)	{

	char	reqbuf[MAXREQ];

	int	n;

	char	*q	=	“quit”;

	int	k	=	0;

	int	i;

	while	(1)	{																			

				n	=	read(consockfd,	reqbuf,	MAXREQ);	/*	Recv	*/

				for	(i	=	0;	i	<	n;	i++)	{

						if	(q[k]	==	reqbuf[i])	{

								k++;

								if	(strlen(q)	==	k)	{

										//	found	“quit”	matching;	note	this	works	across	messages

										exit(0);

								}

						}	else	{

								//	no	match;	re-initialize	k	=	0

								k	=	0;

						}

				}				

			n	=	write(consockfd,	reqbuf,	n);	/*	echo*/

	}

}

	

	

CS 162 Spring 2017, 1st Midterm Exam February 27, 2017

 Page 6/13

P3	(22	points)	Producer/Consumer:	Consider	the	following	code	that	implements	

a	synchronized	unbounded	queue	using	monitors	that	we	went	over	in	lecture:	

1.		Lock	lock;

2.		Condition	dataready;

3.		Queue	queue;

	

4.		AddToQueue(item)	{

5.				lock.Acquire();		//	Get	Lock

6.				queue.enqueue(item);		//	Add	item

7.				dataready.signal();		//	Signal	any	waiters

8.				lock.Release();		//	Release	Lock

9.		}	

10.	RemoveFromQueue()	{

11.			lock.Acquire();		//	Get	Lock

12.			while	(queue.isEmpty())	{

13.					dataready.wait(&lock);	//	If	nothing,	sleep

14.			}

15.			item	=	queue.dequeue();		//	Get	next	item

16.			lock.Release();		//	Release	Lock

17.			return(item);

18.	}

Please answer the following questions.

a) (6 points) Assume that we have multiple producers running AddToQueue() and

multiple consumers running RemoveFromQueue(). Do you need to make any

changes to the code? If yes, specify the changes in the above code by indicating

the line you need to modify, the line #’s between which you need to add new

code, or the line # you need to delete. If not, use no more than two sentences to

explain why.

We don’t need to make any changes, as the code already handles multiple producers and

consumers.

CS 162 Spring 2017, 1st Midterm Exam February 27, 2017

 Page 7/13

b) (10 points) Change the code to implement a bounded queue, i.e., make sure that

the producer cannot write when the queue is full. Add your changes in the empty

space of the code below.

Solution 1 (assuming .isFull() primitive):

1.		Lock	lock;

2.				Condition	dataready;

					Condition	queueready;

3.				Queue	queue;

	

AddToQueue(item)	{

	lock.Acquire();		//	Get	Lock

	while	(queue.isFull())	{

			queueready.wait(&lock);	//	If	nothing,	sleep

	}

	queue.enqueue(item);		//	Add	item

	dataready.signal();		//	Signal	any	waiters

	lock.Release();		//	Release	Lock

}

RemoveFromQueue()	{

	lock.Acquire();		//	Get	Lock

	while	(queue.isEmpty())	{

			dataready.wait(&lock);	//	If	nothing,	sleep

	}

	item	=	queue.dequeue();		//	Get	next	item

	queueready.signal();		//	Signal	any	waiters

	lock.Release();		//	Release	Lock

	return(item);

}

CS 162 Spring 2017, 1st Midterm Exam February 27, 2017

 Page 8/13

Solution 2:

1.		Lock	lock;

2.				Condition	dataready;

					Condition	queueready;

3.				Queue	queue;

					int	queuesize	=	0;

	

AddToQueue(item)	{

	lock.Acquire();		//	Get	Lock

	while	(queueuesize	==	N)	{

			queueready.wait(&lock);	//	If	nothing,	sleep

	}

	queuesize++;

	queue.enqueue(item);		//	Add	item

	dataready.signal();		//	Signal	any	waiters

	lock.Release();		//	Release	Lock

}

RemoveFromQueue()	{

	lock.Acquire();		//	Get	Lock

	while	(queue.isEmpty())	{

			dataready.wait(&lock);	//	If	nothing,	sleep

	}

	item	=	queue.dequeue();		//	Get	next	item

	queuesize--;

	queueready.signal();		//	Signal	any	waiters

	lock.Release();		//	Release	Lock

	return(item);

}

	

CS 162 Spring 2017, 1st Midterm Exam February 27, 2017

 Page 9/13

c) (6 points) Implement a new function, ReadFromQueue(), which uses the

function “item	=	queue.read()” to read an item from the queue without

removing it.

ReadFromQueue()	{

	lock.Acquire();		//	Get	Lock

	while	(queue.isEmpty())	{

			dataready.wait(&lock);	//	If	nothing,	sleep

	}

	item	=	queue.read();		//	Get	next	item

	lock.Release();		//	Release	Lock

	return(item);

}

CS 162 Spring 2017, 1st Midterm Exam February 27, 2017

 Page 10/13

P4 (14 points total) CPU Scheduling: Consider the following single-threaded processes,

and their arrival times, CPU bursts and their priorities (a process with a higher priority

number has priority over a process with lower priority number):

Process CPU burst Arrives Priority

A 4 1 1

B 1 2 2

C 2 4 4

D 3 5 3

Please note:

• Priority scheduler is preemptive.

• Newly arrived processes are scheduled last for RR. When the RR quanta expires,

the currently running thread is added at the end of to the ready list before any

newly arriving threads.

• Break ties via priority in Shortest Remaining Time First (SRTF).

• If a process arrives at time x, they are ready to run at the beginning of time x.

• Ignore context switching overhead.

• The quanta for RR is 1 unit of time.

• Total turnaround time is the time a process takes to complete after it arrives.

Given the above information please fill in the following table.

Time FIFO/FCFS Round Robin SRTF Priority

1 A A A A

2 A A B B

3 A B A A

4 A A C C

5 B C C C

6 C A A D

7 C D A D

8 D C D D

9 D D D A

10 D D D A

Total Turnaround Time 18 19 16 17

CS 162 Spring 2017, 1st Midterm Exam February 27, 2017

 Page 11/13

P5 (16 points) Synchronization: Next Saturday is the international day of Poker. As the

owner of the largest poker website worldwide you expect a large number of games being

played (and finishing) at any point in time in your website. Consider that players can play

more than one game at a time and any two players can play against each other in more

than one game simultaneously. For simplicity, we consider each game has exactly two

players.

The backend system of your poker website contains the following multi-threaded code.

queue					games_finished_queue;

lock_t				games_finished_lock;

semaphore	games_to_process_sem;

typedef	struct	Game	{

	

}	Game;

typedef	struct	Player	{

				lock_t	lock;

				uint64_t	n_chips;

				uint64_t	unique_id;

}	Player;

void	finish_game(Game*	game)	{

					lock_acquire(&games_finished_lock);

					enqueue(&games_finished_queue,	game);

					lock_release(&games_finished_lock);

					sema_up(&games_to_process_sem);

}

void	process_finished_games()	{

					lock_acquire(&games_finished_lock);

					sema_down(&games_to_process_sem);

					Game*	g	=	pop_queue_front(&games_finished_queue);

					move_chips(g->player1,	g->player2,	g->n_chips);

					lock_release(&games_finished_lock);

}

void	move_chips(Player*	player1,	Player*	player2,	uint64_t	n_chips)	{

				lock_acquire(&player1->lock);

				lock_acquire(&player2->lock);

				

				player1->n_chips	-=	n_chips;

				player2->n_chips	+=	n_chips;

				lock_release(&player2->lock);

				lock_release(&player1->lock);

}

CS 162 Spring 2017, 1st Midterm Exam February 27, 2017

 Page 12/13

a) (6 points) Identify two places in the code where deadlock can occur. If deadlock

occurs, use no more than two sentences to explain why it occurs.

First, in process_finished_games	sema_down can make thread wait on a critical

section.

Second,	move_chips can deadlock if two players play against each other

simultaneously. This can lead to two concurrent calls with the same (but swapped)

players/arguments.
move_chips(player1,	player2,	n1)	

move_chips(player2,	player1,	n2)	

	

Note: The second deadlock() assumes that move_chips() is called from another

function not shown in the code. Since this was unclear we gave full credit to people

who did not identify this second deadlock.

b) (10 points) Use the space bellow to change process_finished_games() and	

move_chips () (or copy if correct) to ensure no deadlocks can occur. Explain

succinctly why no deadlock can occur with the newly modified code. Note: a

single lock at the beginning and end of move_chips is not an accepted solution.

void	process_finished_games()	{

					//	acquire	semaphore	outside	of	critical	section

					sema_down(&games_to_process);

					lock_acquire(&games_finished);

					Game*	g	=	pop_queue_front(&games_finished_queue);

					move_chips(g->player1,	g->player2,	g->n_chips);

					lock_release(games_finished);

}

void	move_chips(Player*	player1,	Player*	player2,	uint64_t	n_chips)	{

				//	acquire	locks	in	well	defined	order

				if	(player1->unique_id	<	player2->unique_id)	{

							lock_acquire(&player1->lock);

							lock_acquire(&player2->lock);

				}	else	{	

							lock_acquire(&player2->lock);

							lock_acquire(&player1->lock);

				}

				player1->n_chips	-=	n_chips;

				player2->n_chips	+=	n_chips;

				lock_release(&player1->lock);

				lock_release(&player2->lock);

}

Note: We gave full credit to people who did not identify move_chips() as a deadlock

at (a) and who did not provide the fix here, again, due to confusing text.

CS 162 Spring 2017, 1st Midterm Exam February 27, 2017

 Page 13/13

P6. (10 points) Syscalls: Please answer the following questions.

a) (4 points) Syscall dispatch. Suppose there is a function “foo()” in kernel

memory at address 0xA000 that requires full privileges to run. The kernel would

like to allow userspace threads to use this function. How can the user thread cause

foo() to run? For now, we assume that foo() takes no arguments and has no

return value. (HINT: x86 provides an instruction "INT	N" that sends interrupt #N

to the CPU where N is between 0-255.)

This isn’t the only right answer, but it is the simplest (the answers to part 2 would

also work here): The kernel would pick a free interrupt number (for concreteness,

let’s say “2”). It would then fill in “0xA000” into the IVT entry #2. The user would

cause interrupt 2 to enter the kernel. Finally, foo() would use the “return from

interrupt” instruction to return control to the user.

b) \ (4 points) Syscall execution. Suppose instead of just one function, we wanted to

support an arbitrary number of system calls (potentially even thousands). Would

your approach in part 1 still work? If not, what changes would you need to make?

The fundamental problem is that there are a limited number of interrupts. Writing Yes

or No was not worth any points unless you identified the correct reason. This is

because depending on your implementation either yes or no could be correct.

There could be several right answers to this.

(Fully correct) Similar to Linux: You pass the syscall number in a register (or on the

user stack) and then use a known interrupt. This interrupt handler then gets the

request number and looks up the function in a table.

Another accepted solution was to use a sequence of interrupts to determine an

appropriate syscall. (e.g. calling INT 1 then INT 2 then INT 3 corresponds to syscall

5000)

c) (3 points) Pintos Kernel Stack. In Pintos, would foo() use the user’s stack? If

not, where does it keep its stack?

In Pintos, the kernel does not use the user’s stack. Instead it reserves a portion of the

TCB for the associated kernel stack.

