
 Page 1/10 

University of California, Berkeley 

College of Engineering 

Computer Science Division – EECS 

 

Spring 2013                 Anthony D. Joseph 

 

Midterm Exam  
March 13, 2013 

CS162 Operating Systems 

 

 

Your Name: 

 

 

SID AND 162 Login: 

 

 

TA Name: 

 

 

Discussion Section 

Time: 

 

 
General Information:  

This is a closed book and one 2-sided handwritten note examination. You have 80 minutes to 

answer as many questions as possible.  The number in parentheses at the beginning of each 

question indicates the number of points for that question. You should read all of the questions 

before starting the exam, as some of the questions are substantially more time consuming. 

 

Write all of your answers directly on this paper.  Make your answers as concise as possible. If there 

is something in a question that you believe is open to interpretation, then please ask us about it! 

    Good Luck!! 
 

QUESTION POINTS ASSIGNED POINTS OBTAINED 

1 28  

2 25  

3 17  

4 15  

5 15  

TOTAL 100  

 

 



CS 162 Spring 2013 Midterm Exam  March 13, 2013

 Page 2/10 

1. (28 points total) True/False and short answer questions: 

a. (12 points) True/False and Why? CIRCLE YOUR ANSWER. 

i) The four conditions that must hold in order for deadlock to occur are: Hold-

and-wait, circular waiting, starvation and mutual exclusion. 

 

TRUE     FALSE 
Why? (One sentence)  

 

 

 

 

 

 

ii) The main advantage of multilevel page tables is that they use page table 

memory efficiently. 

 

TRUE     FALSE 
Why? (One sentence)  

 

 

 

 

 

 

iii) In the Nachos priority scheduler, if a HIGH priority thread is waiting for a 

LOW priority thread to release a lock, but there are NO OTHER THREADS in 

the system, the LOW priority thread's effective priority should be LOW. 

 

TRUE     FALSE 
Why? (One sentence)  

 

 

 

 

 

 

iv) In Nachos, a thread's effective priority can only change when it is waiting on a 

thread queue. 

 

TRUE     FALSE 
Why? (One sentence)  

 

 

 



CS 162 Spring 2013 Midterm Exam  March 13, 2013

 Page 3/10 

 

b. (16 points) Short Answer Questions: 

i) (4 points) Give a two to three sentence brief description of the difference 

between starvation and deadlock.  

 

 

 

 

 

 

 

 

ii) (4 points) When using the Banker’s algorithm for resource allocation, if the 

system is in an unsafe state, will it always eventually deadlock? Briefly (1-2 

sentences) state why or why not. 

 

 

 

 

 

 

 

 

iii) (4 points) In two to three sentences briefly discuss why caching is increasingly 

important in modern computer systems, and why it is of particular concern to 

the operating system. 

 

 

 

 

 

 

 

 

iv) (4 points) In two to three sentences briefly explain why the space shuttle failed 

to launch on April 10, 1981. 

 

 

 

  



CS 162 Spring 2013 Midterm Exam  March 13, 2013

 Page 4/10 

2. (25 points) Synchronization primitives: Consider a machine with hardware support for 

a single thread synchronization primitive, called Compare-And-Swap (CAS). 

Compare-and-swap is an atomic operation, provided by the hardware, with the 

following pseudocode: 
int compare_and_swap(int *a, int old, int new) { 
  if (*a == old) { 

*a = new; 
return 1; 

  } else { 
return 0; 

  } 
} 

 

Your first task is to implement the code for a simple spinlock using compare-and-

swap. You are not allowed to assume any other hardware or kernel support exists 

(e.g., disabling interrupts). You may assume your spinlock will be used correctly (i.e., 

no double release or release by a thread not holding the lock) 

 

a. (3 points) Fill in the code for the spinlock data structure. 

struct spinlock { /* Fill in */ 
 

 
 
 
 
 
 

} 

 

b. (4 points) Fill in the code for the acquire data function. 

void acquire(struct spinlock *lock) { /* Fill in */ 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
} 
 



CS 162 Spring 2013 Midterm Exam  March 13, 2013

 Page 5/10 

c. (4 points) Fill in the code for the release data function. 

void release(struct spinlock *lock) { /* Fill in */ 
 
 
 
 
 
 
 
 

 
} 
 

After completing your implementation, you realize that using a spinlock is inefficient 

for applications that may hold the lock for a long time. You consider using the 

following two primitives to implement more efficient locks: atomic_sleep and 

wake. 

 

atomic_sleep is an atomic operation, provided by the hardware, with the 

following pseudocode: 
void atomic_sleep(struct *lock, int *val1, int val2){ 

*val1 = val2;  /* set val1 to val2 */ 
enqueue(lock);     /* put current thread on a 
       lock’s wait queue*/ 
sleep();     /* put current thread to sleep */ 

} 

 

wake is non-atomic with the following pseudocode: 
void wake(struct lock *lock){ 
dequeue(); /* remove a thread (if any) from lock’s 
     wait queue and add it to the 
     scheduler’s ready queue */ 

} 

 

Your second task is to reimplement your lock code more efficiently using 

atomic_sleep and wake. You may use Compare-And-Swap if you want. You are 

not allowed to assume any other hardware or kernel support exists (e.g., disabling 

interrupts). 

 

 

 

 

 

 

 

 



CS 162 Spring 2013 Midterm Exam  March 13, 2013

 Page 6/10 

d. (4 points) Fill in the code for the new lock data structure. 

struct lock { /* Fill in */ 
 

 
 

 
 
} 

e. (5 points) Fill in the code for the new acquire data function. 

void acquire(struct lock *lock) { /* Fill in */ 
 

} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
} 

 

f. (5 points) Fill in the code for the new release data function. 

 
void release(struct lock *lock) { /* Fill in */ 
 
 
 
 
 
 
 
 
 

 
} 
 



CS 162 Spring 2013 Midterm Exam  March 13, 2013

 Page 7/10 

 

3. (17 points total) Memory management:  

a. (7 points) Consider a memory system with a cache access time of 10ns and a 

memory access time of 200ns, including the time to check the cache. What hit rate 

H would we need in order to achieve an effective access time 10% greater than 

the cache access time? (Symbolic and/or fractional answers are OK) 

 

 

 

 

 

 

 

 

 

 

b. (10 points) Suppose you have a 47-bit virtual address space with a page size of 16 

KB and that page table entry takes 8 bytes. How many levels of page tables would 

be required to map the virtual address space if every page table is required to fit 

into a single page? Be explicit in your explanation and show how a virtual address 

is structured. 

 

  



CS 162 Spring 2013 Midterm Exam  March 13, 2013

 Page 8/10 

4. (15 points total) Concurrency control: Building H
2
O2.  

The goal of this exercise is for you to create a monitor with methods Hydrogen() 

and Oxygen(), which wait until a Hydrogen Peroxide molecule (H
2
O2) can be 

formed and then return. Don’t worry about actually creating the Hydrogen Peroxide 

molecule; instead only need to wait until two hydrogen threads and two oxygen 

threads can be grouped together. For example, if two threads call Hydrogen, another 

thread calls Oxygen, and then a fourth thread calls Oxygen, the fourth thread should 

wake up the first three threads and they should then all return. 

 

a. (3 points) Specify the correctness constraints. Be succinct and explicit in your 

answer. 

 

 

 

 

 

 

 

 

 

 

b. (12 points) Observe that there is only one condition any thread will wait for (i.e., a 

hydrogen peroxide molecule being formed). However, it will be necessary to 

signal hydrogen and oxygen threads independently, so we choose to use two 

condition variables, waitingH and waitingO.  

State variable description Variable name Initial value 

Number of waiting hydrogen threads wH 0 

Number of waiting oxygen threads wO 0 

Number of active hydrogen threads aH 0 

Number of active oxygen threads aO 0 

 

You start with the following code: 
          Hydrogen() { 
            wH++; 
            lock.acquire(); 
            while (aH == 0) { 
              if (wH >= 2 && wO >= 2) { 
                wH-=2; aH+=2; 
                wO-=2; aO+=2; 
                waitingH.broadcast(); 
                waitingO.broadcast(); 
              } else { 
                waitingH.wait(&lock); 
                lock.acquire(); 
              } 
            } 
            aH--; 
            lock.release(); 
          } 



CS 162 Spring 2013 Midterm Exam  March 13, 2013

 Page 9/10 

 
          Oxygen() { 
            wO++; 
            lock.acquire(); 
            while (aO == 0) { 
              if (wH >= 2 && wO >= 2) { 
                wH-=2; aH+=2; 
                wO-=2; aO+=2; 
                waitingH.signal(); 
                waitingH.signal(); 
                waitingO.signal(); 
              } else { 
                waitingO.wait(&lock); 
              } 
            } 
            aO--; 
            lock.release(); 
          } 

 

For each method, say whether the implementation either (i) works, (ii) doesn’t work, 

or (iii) is dangerous – that is, sometimes works and sometimes doesn’t.  If the 

implementation does not work or is dangerous, explain why (there maybe several 

errors) and briefly show how to fix it so it does work. Also, list and fix any 

inefficiencies. You do not have to reimplement the methods.  
i. Hydrogen() 

 

 

 

 

 

 

 

 

 

 

 

 

 
ii. Oxygen() 

 

 

 

  



CS 162 Spring 2013 Midterm Exam  March 13, 2013

 Page 10/10 

 

5. (15 points total) Scheduling. Consider the following processes, arrival times, and CPU 

processing requirements: 

Process Name Arrival Time Processing Time 

1 0 4 

2 2 3 

3 5 3 

4 6 2 
For each scheduling algorithm, fill in the table with the process that is running on the 

CPU (for timeslice-based algorithms, assume a 1 unit timeslice). For RR and SRTF, 

assume that an arriving thread is run at the beginning of its arrival time, if the scheduling 

policy allows it. Also, assume that the currently running thread is not in the ready queue 

while it is running. The turnaround time is defined as the time a process takes to complete 

after it arrives. 

Time  FIFO RR SRTF 

0 

 

1 1 1 

1 

 

   

2 

 

   

3 

 

   

4 

 

   

5 

 

   

6 

 

   

7 

 

   

8 

 

   

9 

 

   

10 

 

   

11 

 

   

Average 

Turnaround 

Time 

   


