
CS 162 Operating Systems and System Programming
Fall 2024 Midterm 1

INSTRUCTIONS

Please do not open this exam until instructed to do so. Do not discuss exam questions for at least 24 hours after the
exam ends, as some students may be taking the exam at a different time.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

GENERAL INFORMATION

This is a closed book exam. You are allowed 1 page of notes (both sides). You have 110 minutes to complete as
much of the exam as possible. Make sure to read all of the questions first, as some of the questions are substantially
more time consuming.

Write all of your answers directly on this paper. Make your answers as concise as possible. On programming questions,
we will be looking for performance as well as correctness, so think through your answers carefully. If there is something
about the questions that you believe is open to interpretation, please ask us about it!

Problem Possible
0 1
1 18
2 20
3 24
4 23
5 14

Total 100

CS 162 Fall 2024 MT2 2

Preliminaries

This is a proctored, closed-book exam. You are allowed 1 page of notes (both sides). You may not use a
calculator. You have 110 minutes to complete as much of the exam as possible. This exam is out of 100 points.
Make sure to read all the questions first, as some are substantially more time-consuming.

If there is something about the questions you believe is open to interpretation, please ask us about it.

We will overlook minor syntax errors when grading coding questions. There is a reference sheet at the end
of the exam that you may find helpful.

(a)

Name

Perilous Pintoast

(b)

Student ID

162.162.162.162

(c)

Discussion TA’s Full Name

Professor Pintoaster

(d)

Please read the following honor code: “I understand this is a closed-book exam. I promise the answers I
give on this exam are my own. I understand that I am allowed to use one 8.5x11, double-sided, handwritten
cheat-sheets of my own making, but otherwise promise not to consult other people, physical resources
(e.g. textbooks), or the internet in constructing my answers.”

Write your full name below to acknowledge that you’ve read and agreed to this statement.

Perilous Pintoast

(e) (1.0 points) Staff Ed Username Suggestions

Sinister Sean Yang

CS 162 Fall 2024 MT2 3

1. (16.0 points) True/False

Please explain your answer in TWO SENTENCES OR LESS. Longer explanations will GET NO CREDIT.
Answers without an explanation or that just rephrase the question will GET NO CREDIT.

If a statement is TRUE, explain why the provided statement is true, or provide an example when relevant.

If a statement is FALSE, explain why the provided statement is false, or provide a counterexample when
relevant.

(a) (2.0 pt) Increasing the cache size can lead to a decreased cache hit rate.

 True. # False.

Explain.

In algorithms that don’t have the stack property, Belady’s anomaly
can happen where cache hit rate can decrease. See Discussion 6 for an
example.

(b) (2.0 pt) MLFQ prioritizes I/O bound tasks over CPU-intensive tasks.

 True. # False.

Explain.

True. MLFQ demotes tasks that expire their quanta on the CPU to a
lower priority, which are CPU-bound tasks. It will promote tasks that
do not expend their quanta, which tend to be more I/O bound.

(c) (2.0 pt) In a segmented memory model, information about the base and length of segments are stored in
special registers.

True. False.

Explain.

False. They are stored in the segment descriptor table in memory. The
segment selectors (taken from special registers in x86 such as the CS
register or from a portion of the virtual address) indicate which segment
the memory access corresponds to.
We were lenient with grading this question.

(d) (2.0 pt) MMU is a part of the OS kernel that translates virtual addresses into physical addresses.

True. False.

Explain.

False. The MMU is a piece of hardware that handles address translation.

CS 162 Fall 2024 MT2 4

(e) (2.0 pt) After the kernel handles a user page fault, the user application resumes execution at the instruction
immediately following the instruction that caused the page fault.

True. False.

Explain.

False. Suppose a load/store instruction causes a page fault, and the
page fault handler in the kernel brings in the correct page. Then,
once control resumes in the user application side, it should replay the
instruction so that the instruction executes successfully.

(f) (2.0 pt) SRTF scheduling does not suffer from the convoy effect, but SJF scheduling does.

 True. # False.

Explain.

True. SRTF is a preemptive scheduler that always schedules the shortest
job, so it doesn’t suffer from the convoy effect. SJF will not preempt a
current long job that arrives before shorter jobs.

(g) (2.0 pt) You can implement the MIN replacement policy in a real operating system.

True. False.

Explain.

False. The MIN replacement policy requires knowledge of which task/-
page will be requested furthest into the future. This is not possible in a
real operating system.

(h) (2.0 pt) In a system with hold-and-wait, no preemption, and mutual exclusion, we can detect deadlock by
checking the resource allocation graph for cycles.

True. False.

Explain.

False. Cycles are a necessary but not sufficient condition for deadlock
in a resource allocation graph, assuming the other conditions hold.

CS 162 Fall 2024 MT2 5

(i) (2.0 pt) You can design a physically-indexed cache in a way that you can look up the TLB in parallel
with cache access.

 True. # False.

Explain.

True. Since offset bits are the same for both virtual and physical
addresses, you can have the index be in the offset. Then, you can access
the cache with the index without having the physical address.

CS 162 Fall 2024 MT2 6

2. (20.0 points) Multiple Select

(a) (2.5 pt) Select all true statements.

■ A process’s virtual address space can be larger than the size of the physical address space.

■ The physical address space can be larger than a process’s virtual address space.

■ A process cannot access more memory than the size of its virtual address space.

2 A process cannot access more memory than the size of the physical address space.

2 You cannot use segmentation and paging at the same time.

(b) (2.5 pt) Select all ways that one can use to avoid/prevent deadlock.

■ Allocate virtually "infinite" (i.e. a very large number of) resources that can be shared among threads.

■ Dynamically delay resource requests that would otherwise put the system in an unsafe state.

■ Request resources in a fixed order across all threads.

2 Create a new copy of a resource if the resource is not available.

■ Write code that doesn’t deadlock.

(c) (2.5 pt) Select all true statements.

■ The clock algorithm is an approximation of LRU.

■ The clock algorithm implicitly partitions pages into "old" and "new" pages.

■ The second-chance list algorithm partitions pages into "old" and "new" pages.

2 The larger n is for the nth chance algorithm, it becomes more efficient time-wise to find and evict a
page.

2 If the clock hand moves slowly, it is an indication that the clock algorithm is performing poorly.

(d) (2.0 pt) Select all true statements.

■ Programs tend to alternate between bursts of CPU and I/O.

■ Round robin can suffer from poor cache performance.

■ FCFS is prone to starvation.

2 As a system’s utilization approaches 1, its response time approaches 1.

2 None of the above.

(e) (2.5 pt) Select all of the following true statements.

2 If all threads immediately block when unable to acquire a lock, priority inversion can occur when
threads can only be one of two priorities.

■ The average completion time of SRTF is always lower or equal to that of FCFS.

2 Higher stride jobs run more frequently compared to lower-stride jobs.

2 Stride scheduling is prone to starvation.

2 As the value of the quanta used in Round Robin increases, the Round Robin algorithm begins to
resemble SRTF.

CS 162 Fall 2024 MT2 7

(f) (2.0 pt) Select all valid approaches to dealing with deadlocks.

■ Deadlock avoidance

■ Deadlock prevention

■ Deadlock recovery

■ Deadlock denial

2 None of the above.

(g) (2.0 pt) Select all true statements about EEVDF.

2 EEVDF is designed to maximize throughput of all tasks.

■ When a thread has negative lag, its next eligible virtual time gets postponed.

■ The virtual deadline of a thread is its completion time in an ideal fluid flow model.

2 If a new thread with nonzero weight enters the system, you would have to recompute the virtual eligible
time of another thread.

2 None of the above.

(h) (2.0 pt) Select all true statements under the assumption that pages are all the same size.

■ A paging memory model may suffer from internal fragmentation.

2 A paging memory model may suffer from external fragmentation.

■ A segmentation memory model may suffer from external fragmentation.

2 A single level page table dynamically increases in size when new pages are mapped.

2 None of the above.

(i) (2.0 pt) Select all true statements about Homeworks 2 and 3.

2 cat test.txt | head -3 shows you test.txt’s file headers (e.g. creation date, size, permissions).

■ Typing wc in your shell searches for the executable wc in a directory specified the PATH environment
variable.

■ You can make HTTP requests with curl.

■ When you make an HTTP GET request for a directory, the server may respond with an index.html
file.

2 None of the above.

CS 162 Fall 2024 MT2 8

3. (24.0 points) Short Answer

(a) (3.0 pt) Explain in detail how you can implement copy-on-write. Be explicit on how you would change
page table entries and appropriate handlers in the kernel.

1. Mark all pages as read-only.
2. Copy the page table to the newly created process.
3. Once either of them attempts to write to a page, it will trigger a page fault.
4. In the page fault handler, make a physical copy of the page. Install this new

page in the page table of the process that triggered the page fault.

This way, we do not have to make a physical copy of the entire virtual address
space upon fork. Instead, we take advantage of demand paging to copy pages out
only when necessary, which is particularly useful when we fork a new process and
immediately exec.

(b) (8.5 pt) Consider a system with a preemptive priority-based scheduler that implements priority
donation. Suppose a set of threads enter the system and execute in this order. Assume no other threads
enter the system after Step 5.

1. Thread A is created with priority 1 successfully acquires Lock 1.

2. Thread B is created with priority 50, successfully acquires Lock 2, and calls acquire on Lock 1.

3. Thread C is created with priority 100, and calls acquire on Lock 2.

4. Thread D is created with priority 80, and calls acquire on Lock 1.

5. Thread A runs and releases Lock 1, but does not terminate.

i. (2.5 pt) What is the effective priority of Thread A after each of these 5 steps?

1, 50, 100, 100, 1

ii. (2.5 pt) What is the effective priority of Thread B after each step, for steps (2) through (5)?

50, 100, 100, 100

iii. (3.5 pt) What is the order of execution of Threads A, B, C, and D after Step (5) until each thread
runs to completion?

Assume that when Thread B is rescheduled to run, it releases Lock 2, releases Lock 1, then terminates,
in that order. Example Answer: <B, C, D, A, B>

B, C, B, D, B, A

CS 162 Fall 2024 MT2 9

(c) (4.5 pt) Suppose you investigated a multi-processed program and find out it swaps pages in and out
extremely frequently. This is strange, since this was written to be a heavily CPU-bound program.

i. (1.5 pt) What is the most likely phenomenon that is happening? Answer in five words or fewer.

Thrashing

ii. (1.5 pt) Given the scenario above, provide an inequality in terms of the following terms:

• n, the number of processes

• RSS, the resident set size of each process (assume it is identical for every process)

• PHYS_MEM, the size of physical memory

n ∗ RSS > PHYS_MEM

iii. (1.5 pt) You ended up simply serializing the processes and found out it led to no swap activity within
a single process. Give an inequality between the working set size (WSS) and resident set size (RSS) of
each process and PHYS_MEM. (e.g. PHYS_MEM ≤ RSS ≤ WSS).

WSS ≤ RSS ≤ PHYS_MEM

(d) (3.0 pt) Below shows some code that attempts to free the elements of a Pintos list that implements an
FDT. Assume this correctly compiles, and &t->pcb->fdt is a valid pointer to a correctly formed Pintos
list. Explain the issue with the code below, and propose a solution. Be detailed, mentioning how a Pintos
list works. Vague or trivial responses (i.e. buggy free, kernel stack overflow, etc.) will not be given credit.

struct fdt_elem* fd;
struct list_elem* e;
struct thread* t = thread_current();
for (e = list_begin(&t->pcb->fdt); e != list_end(&t->pcb->fdt); e = list_next(e)) {

fd = list_entry(e, struct fdt_elem, elem);
free(fd);

}

Once the enclosing struct (struct fdt_elem) is freed, the Pintos
list_elem struct inside is also freed, which contains pointers to the
next and previous elements. Therefore, iterating to the next element
will fail. The simplest fix is to move e = list_next(e) in the for-loop to
the line following list_entry and preceding free.

CS 162 Fall 2024 MT2 10

(e) (3.0 pt) Suppose that we have the following resources: A, B, C and threads T1, T2, T3. The total number
of each resource is:

A B C
Total 8 10 5

Available 1 5 1

Further, assume that the processes have the following maximum requirements and current allocations:

Thread ID Current Maximum Needed
A B C A B C A B C

T1 2 1 1 4 9 4 2 8 3
T2 1 2 2 6 3 3 5 1 1
T3 4 2 1 5 2 2 1 0 1

Note: the tables above are provided for your convenience. You do not need to fill them out.
Is the system in a SAFE state? If so, give a potential order of thread completions that makes it SAFE.

Yes this system is in a safe state. First, T3 can run -> Available <A,
B, C> = <0, 5, 0> Then T3 donates its resources back to the available
pool -> <5, 7, 2> Now we have enough resources to run T2. When T2
finishes, Available <A, B, C> = <5+1, 7+2, 2+2> = <6, 9, 4> T1
now can satisfy all requests, so T1 runs.
Ordering: T3, T2, T1.

(f) (2.0 pt) Given the following information: A single-level page table scheme with 20 ns to access main
memory and 3 ns to look up an entry in the TLB.

What is the required hit rate for the TLB to achieve AMAT that is 10% of the memory access time for a
page fault without a TLB?

A page fault without a TLB requires 2 memory accesses which takes
40 ns. To achieve 10% of that, we need to have an AMAT of 4 ns. As
the access time for main memory is 20 ns, no hit rate will result in an
AMAT of 4 ns, so this question is impossible.

This question was NOT graded.

CS 162 Fall 2024 MT2 11

4. (23.0 points) Take a Page out of My Book

You may leave your answers to the following questions as an arithmetic expression involving terms that are
powers of 2.

We have a system where virtual addresses are 48 bits wide, and we have 16 KiB sized pages. We also have 64
GiB of physical memory available. Each PTE (page table entry) is 4 Bytes. Assume that we’re working with
little-endian, byte-addressable memory.

Here’s the schema of the virtual address, which is 48 bits:

UNUSED VPN 1 VPN 2 Offset
(X bits) ([C] bits) ([C] bits) ([A] bits)

And of the page table entry, which is 32 bits (4 Bytes):

PPN UNUSED Dirty Kernel-
only

Read-
only

Present Valid

([D] bits) (Y bits) (1 bit) (1 bit) (1 bit) (1 bit) (1 bit)

(a) (2.0 pt) How many bits are in the offset?

16 KiB ⇒ 214 ⇒ 14 bits in offset

(b) (2.0 pt) If we wanted a single page table to fit inside of a page, how many PTEs would be in a page table?

214 bytes / 4 bytes per PTE = 212 PTEs

(c) (1.0 pt) How many bits should there be for each VPN? 12

(d) (2.0 pt) How many bits should there be for the PPN?

64 GiB ⇒ 236 bit physical address space. 236/offset bits = 236/214 = 222 ⇒ 22.

(e) (1.5 pt) Describe one potential use case for the bits left unused in the PTE.
Vague responses or explaining an existing mechanism in the schema will be given no credit.

We can have a "reference" bit to see if the page was recently referenced.
This can be used for the clock algorithm for page eviction policies.

(f) (1.5 pt) Provide one potential usage case for the bits left unused in the virtual address.
Vague responses or explaining an existing mechanism in the schema will be given no credit.

We can store a process ID in the high bits. This allows us to avoid
flushing the TLB or virtually-tagged caches upon a context switch.

CS 162 Fall 2024 MT2 12

(g) (14.0 pt) Note: this subpart is independent of the previous subparts.

Assume we have a non-"magic" memory scheme with 16 MiB of virtual memory, 1 MiB of physical memory
and a page size of 256B.

The virtual address is 24 bits wide.

VPN 1 VPN 2 Offset
(8 bits) (8 bits) (8 bits)

This translates to a physical address which is 20 bits wide.

PPN Offset
(12 bits) (8 bits)

Our page table entries are 16 bits wide.

PPN Metadata
(12 bits) (4 bits)

And the metadata is formatted as follows

Kernel Only Use Writable Valid
1 bit 1 bit 1 bit 1 bit

Fill out the following table of memory addresses by performing a page table walk with the physical
memory given in the following page. Assume you are running in user mode on a little endian machine with
the PTBR containing the value 0xC0000. Each access either reads or writes one byte.

If any operation is unsuccessful while doing the walk, fill in the rest of the row with N/A and write the
failure in the Result column. If we notice an access violation, we do NOT translate the address. Possible
access failures include "KERNEL_ONLY", "NOT_WRITABLE", and "INVALID", and any
addresses not in present in the table have failure code "UNKNOWN". Be careful, since it is possible
that two PTEs point to the same page with different metadata. Otherwise, write the byte loaded or "OK"
if the store was successful.

CS 162 Fall 2024 MT2 13

Virtual
Address

Operation PTE 1
Address

PTE 2
Address

Physical
Address

Result

0x731355 Load 0xC00E6 0x20026 0xA0055 0xDB

0x52203F Store

0xC00A4 0x60040 0xF003F OK

0x52127F Store

0xC00A4 0x60024 A007F OK

0x760063 Load

0xC00EC N/A N/A INVALID

0x603208 Load

0xC00C0 0x20064 0xF0008 0x19

0x62226E Load

0xC00C4 0x20044 F006E 0xAB

0x012001 Store

0xC0002 0x20040 N/A KERNEL_ONLY

0x472317 Store

0xC008E 0x60046 N/A NOT_WRITABLE

CS 162 Fall 2024 MT2 14

Addr +F +E +D +C +B +A +9 +8 +7 +6 +5 +4 +3 +2 +1 +0
0x20000 A6 2C 94 4A 77 62 CF 7A C6 E3 83 B7 AD 1F A0 03
0x20010 C5 BB 2F 09 65 06 0C 06 48 5C 70 F0 00 03 ED 69
0x20020 E0 3D 26 D6 38 0A 95 04 A0 01 F0 01 A0 01 A0 03
0x20030 EF AC 66 40 0E F3 96 20 37 78 57 47 A0 03 A8 65
0x20040 64 14 39 E1 D7 91 47 48 A0 03 F0 01 42 92 A0 0F
0x20050 07 78 7C 27 EF 67 13 33 E2 86 D0 3F 5F 37 96 5C
0x20060 92 B5 5D 54 FC CC 22 0A 93 74 F0 03 4A 6E F4 18
0x20070 17 08 74 7D FA 48 82 D3 88 22 1E F6 04 F2 7E 7E

. . .
0x60000 8A 71 6B 6C DC E3 54 3C 48 5E CD 8B 2C 34 F3 9B
0x60010 2E 4D F9 88 9E C4 5D 7C 3B C2 0F F0 07 00 CE FF
0x60020 B9 EF 30 07 A6 2E 19 88 F0 02 A0 03 A0 04 85 94
0x60030 F5 C9 F6 6B B2 80 D0 7F 78 D9 1F CA A0 08 10 CC
0x60040 C1 28 09 80 56 3B 08 53 F0 05 A0 01 CE 07 F0 03
0x60050 B7 79 7C 68 3E A3 8D CC DD 89 93 B8 42 A8 B7 DA
0x60060 E1 DD FB 64 7F 68 C7 D7 B4 74 A0 03 8C D7 60 AA
0x60070 87 3D 4E D7 1A EF F9 EA B0 43 5D 48 21 83 01 1A

. . .
0xA0000 BE A7 CF 47 E2 16 C0 B1 4B 5D 9B 48 60 91 05 38
0xA0010 5C 1F AB E6 20 AD 64 AA E9 C5 4F 2B ED 97 6A 58
0xA0020 91 35 18 1D C0 9C 76 BE 9F D2 9A EC F9 D2 D6 65
0xA0030 DF DE 2E 9C 51 A0 FB ED F6 41 62 CB C6 93 00 9E
0xA0040 C3 EC 31 3C B1 8C 80 D2 10 8F 65 70 39 C7 09 DA
0xA0050 A8 E5 DB 62 6F E3 7B CB AD AF DB 60 A0 1A 62 3A
0xA0060 A9 A9 1D 9D 21 78 69 20 6B 26 06 BD B3 A4 61 47
0xA0070 4C 5D 24 FF D3 0E 4D F7 20 01 57 62 8B 30 92 A4

. . .
0xC0000 2F 50 9D F0 E8 20 A1 96 9E B4 F4 E1 20 03 00 60
0xC0010 47 42 14 05 46 45 C1 52 93 EC C3 6F D7 30 CC DE
0xC0020 6D 69 5B 4F 83 DC 33 91 FF 91 C9 A1 19 CC A0 01
0xC0030 BC D5 B0 15 E9 B5 4A 24 01 28 7E C1 5C 8A CC 48
0xC0040 2F 2B F5 A5 A6 A6 12 20 04 C9 93 DD A5 DB 53 6D
0xC0050 1A A4 D6 41 A6 DD FF EE 6E 93 53 18 20 07 D0 D6
0xC0060 FA F3 25 C5 83 90 E5 41 2C 76 08 A0 60 01 60 08
0xC0070 F9 B3 66 46 ED 82 DD E3 3C 13 2A 60 0E 33 26 BC
0xC0080 60 03 F2 03 0E 48 1B D5 95 13 B0 B8 2A 91 2A AA
0xC0090 69 2C E4 A9 42 21 B3 F6 C0 C8 96 C4 65 FD CE 84
0xC00A0 82 BA BA E6 65 5B F6 97 16 06 60 03 A6 DC FD 60
0xC00B0 C0 05 DA F6 66 8D 4F 26 BA 74 67 D7 30 DB AC 14
0xC00C0 21 EE CD 59 1A DE 4E 4D E4 DB 20 01 51 30 20 03
0xC00D0 E8 48 2B 8E 1B E6 FE 6D 31 48 ED 92 4A A2 64 12
0xC00E0 ED 86 20 02 5D F3 99 90 20 07 D7 D4 89 46 0C D2
0xC00F0 71 EE 86 DB 7C 0A DE 46 5E 90 92 CF 7E 20 18 EB

. . .
0xF0000 A0 B6 91 71 A1 E9 58 19 53 A8 0C 42 DB 0A BC 21
0xF0010 81 D5 B9 F9 5D 30 5C 90 1A 3F B4 FF 7B E6 94 94
0xF0020 EA D1 F3 97 1F D8 F6 FC CB 61 38 DB D9 FF 8A FB
0xF0030 55 18 F2 52 7B CE CA B1 F5 79 95 51 83 4B 1B 07
0xF0040 3A 84 37 C0 31 51 76 0C FC FC BF 53 C3 2E 64 E8
0xF0050 87 3F 5C EC C5 F9 A9 5A 0A FA BF 26 6C CC 53 5A
0xF0060 B2 AB 1F 1D 06 D7 51 D6 1B 1B C5 71 2D 1D E9 53
0xF0070 8D BB D9 16 66 89 21 BA 64 CD 6D B0 B6 ED ED 0C

CS 162 Fall 2024 MT2 15

5. (14.0 points) EEVDF

Suppose we are implementing EEVDF (Earliest Eligible Virtual Deadline First) as our scheduling algorithm.

Our system has the following constraints:

(a) We represent each request length in real physical time, which is measured in terms of ticks.

(b) We allocate CPU time for each thread in increments of a fixed time quanta q=1 tick.

(c) Break ties for scheduling in favor of the highest numbered thread.

(d) Thread 1 becomes active at t = 0, and has a request length r1 = 3, with weight w1 = 1.

(e) Thread 2 becomes active at t = 1, and has a request length r2 = 1, with weight w2=1.

(f) Thread 3 becomes active at t = 2, and has a request length r3 = 3, with weight w3 = 3.

Assume each thread takes up exactly its requested service time for each request, and leaves the system after
completing 3 requests of its specified request length.

Write virtual eligible time and virtual deadline for each thread, as well as which thread runs at the given physical
and virtual time. T{i} represents thread i in the below table. The scheduled thread column refers to the
currently running thread at the corresponding time.

(a) (1.0 pt) How does the rate of virtual time (dVdt) change at t = 0, t = 1, and t = 2? Show your calculations.

From t = 0 to t = 1, dV
dt = 1

w1
= 1.

From t = 1 to t = 2, dV
dt = 1

w1+w2
= 0.5.

From t = 2 to t = 3, dV
dt = 1

w1+w2+w3
= 0.2.

(b) (13.0 pt) Fill in this table based on the above specifications.

Real time (ticks) Virtual time T1 T2 T3 Scheduled thread

t V(t) ve vd ve vd ve vd −

0 0 0 3 − − − − T1

1 1 0 3 1 2 − − T2

2 1.5 0 3 2 3 1.5 2.5 T3

3 1.7 0 3 2 3 1.5 2.5 T3

4 1.9 0 3 2 3 1.5 2.5 T3

5 2.1 0 3 2 3 2.5 3.5 T2

6 2.3 0 3 3 4 2.5 3.5 T1

