
 Page 1/12

University of California, Berkeley

College of Engineering

Computer Science Division – EECS

Fall 2013 Anthony D. Joseph and John Canny

Midterm Exam #1
October 21, 2013

CS162 Operating Systems

Your Name:

SID AND 162 Login:

TA Name:

Discussion Section

Time:

General Information:

This is a closed book and one 2-sided handwritten note examination. You have 80 minutes to

answer as many questions as possible. The number in parentheses at the beginning of each

question indicates the number of points for that question. You should read all of the questions

before starting the exam, as some of the questions are substantially more time consuming.

Write all of your answers directly on this paper. Make your answers as concise as possible. If there

is something in a question that you believe is open to interpretation, then please ask us about it!

 Good Luck!!

QUESTION POINTS ASSIGNED POINTS OBTAINED

1 8

2 17

3 15

4 23

5 18

6 19

TOTAL 100

CS 162 Fall 2013 Midterm Exam #1 October 21, 2013

NAME: _______________________________________

 Page 2/12

1. (8 points total) True/False and Why? CIRCLE YOUR ANSWER.

i) A user-level process cannot modify its own page table entries.

TRUE FALSE
Why?

ii) The scheduler is the part of an Operating System that determines the priority of

each process.

TRUE FALSE
Why?

iii) Shortest Remaining Time First is the best preemptive scheduling algorithm

that can be implemented in an Operating System.

TRUE FALSE
Why?

iv) The working set model is used to compute the average number of frames a job

will need in order to run smoothly without causing thrashing.

TRUE FALSE
Why?

CS 162 Fall 2013 Midterm Exam #1 October 21, 2013

NAME: _______________________________________

 Page 3/12

2. (17 points total) Deadlock.

a. (11 points total) Recall the various deadlock detection and prevention algorithms

we’ve discussed in this course, and consider the following snapshot of a system

with five processes (P1, P2, P3, P4, P5) and four resources (R1, R2, R3, R4).

There are no current outstanding queued unsatisfied requests.

 Currently Available Resources
R1 R2 R3 R4

2 1 2 0

 Current Allocation Max Need Still Needs
Process R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4

P1 0 0 1 2 0 0 3 2 0 0 2 0

P2 2 0 0 0 2 7 5 0 0 7 5 0

P3 0 0 3 4 6 6 5 6 6 6 2 2

P4 2 3 5 4 4 3 5 6 2 0 0 2

P5 0 3 3 2 0 6 5 2 0 3 2 0

i) (5 points) Is this system currently deadlocked, or can any process become

deadlocked? Why or why not? If not deadlocked, give an execution order.

ii) (3 points) If a request from a process P1 arrives for (0, 4, 2, 0), can the request

be immediately granted? Why or why not? If yes, show an execution order.

CS 162 Fall 2013 Midterm Exam #1 October 21, 2013

NAME: _______________________________________

 Page 4/12

iii) (3 points) If a request from a process P2 arrives for (0, 1, 2, 0), can the request

be immediately granted? Why or why not? If yes, show an execution order.

b. (6 points) Briefly in at most three sentences each describe two approaches to

avoiding deadlock.

Approach #1:

Approach #2:

CS 162 Fall 2013 Midterm Exam #1 October 21, 2013

NAME: _______________________________________

 Page 5/12

3. (15 points total) Demand Paging

For each of the following page replacement policies, list the total number of page

faults and fill in the contents of the page frames of memory after each memory

reference.

a. (5 points) MIN page replacement policy:

Reference E D H B D E D A E B E D E B G

Page #1 E

Page #2 - D

Page #3 - - H
Mark X

for a fault
X X X

Number of MIN page faults? ______________

b. (5 points) LRU page replacement policy:

Reference E D H B D E D A E B E D E B G

Page #1 E

Page #2 - D

Page #3 - - H
Mark X

for a fault
X X X

Number of LRU page faults? ______________

c. (5 points) FIFO page replacement policy:

Reference E D H B D E D A E B E D E B G

Page #1 E

Page #2 - D

Page #3 - - H
Mark X

for a fault
X X X

Number of FIFO page faults? ______________

CS 162 Fall 2013 Midterm Exam #1 October 21, 2013

NAME: _______________________________________

 Page 6/12

4. (23 points) Memory management:

a. (5 points) Consider a memory system with a cache access time of 10ns and a

memory access time of 110ns – assume the memory access time includes the time

to check the cache. If the effective access time is 10% greater than the cache

access time, what is the hit ratio H? (fractional answers are OK)

b. (18 points total) Address Translation:

i) (5 points) Consider a machine with a physical memory of 8 GB, a page size of

8 KB, and a page table entry size of 4 bytes. How many levels of page tables

would be required to map a 46-bit virtual address space if every page table fits

into a single page? Be explicit in your explanation.

ii) (4 points) List the fields of a Page Table Entry (PTE) in your scheme.

CS 162 Fall 2013 Midterm Exam #1 October 21, 2013

NAME: _______________________________________

 Page 7/12

iii) (3 points) Without a cache or TLB, how many memory operations are required

to read or write a single 32-bit word?

iv) (6 points) How much physical memory is needed for a process with three

pages of virtual memory (for example, one code, one data, and one stack

page)?

CS 162 Fall 2013 Midterm Exam #1 October 21, 2013

NAME: _______________________________________

 Page 8/12

5. (18 points total) Scheduling.

Assumptions: All timeslice-based algorithms have a timeslice of one unit; The

currently running thread is not in the ready queue while it is running; An arriving

thread is run at the beginning of its arrival time, if the scheduling policy allows it.

Turnaround time is defined as the time a process takes to complete after it arrives.

Fill in ALL blanks in EACH table – each blank has an unambiguous answer.

For the missing schedulers, the possibilities are SRTF, RR, and Priority.

Priority is a preemptive scheduler.

Hint: Fill in the entry time (below) for Thread C first!

Priorities

A 3

B 4

C 5

D 6

Entry Times

A 1

B 2

C

D 8

↓Current Time

 Scheduler →

Currently Scheduled Process

FIFO

1 A A A

2 A A B

3 A A B

4 B

5 B

6 B

7 C

8 D

9 D

10 D

Avg Turnaround Time 3.5

CS 162 Fall 2013 Midterm Exam #1 October 21, 2013

NAME: _______________________________________

 Page 9/12

6. (19 points) Concurrency Control.

You are the organizer of a gaming exhibit at the E3 Electronic Entertainment Expo.

You want to allow the attendees to play your startup’s new game demo. You model

the attendees as threads, called players, and your job is to synchronize access to a

single copy of the game, as follows:

• When a player arrives, he or she waits in a waiting area.

• Once there are 4 or more players waiting to play, you allow exactly 4 of

them to leave the waiting area to begin playing. These four leave the

waiting area and approach the game console.

• When a player reaches the console, the player waits until all four players

are at the console, at which point all four players begin playing.

• Players may finish playing at any time. However, you cannot allow any

new players to begin playing until all four players have left.

• You do not need to let players out of the waiting area in the order in which

they arrived.

• You cannot assume that a player will ever finish playing.

You decide to solve this synchronization problem using two custom

synchronization primitives, which have “barrier-like” semantics:
GameBarrier gb;

ConsoleBarrier cb;

Your task is to implement these synchronization primitives according to the

specifications listed below. Each player thread has access to the two global

barriers, and uses them in the following sequence:

void Player(ThreadID tid, GameBarrier gb, ConsoleBarrier cb) {

gb.waitToPlay();

cb.waitAtConsole();

play();

gb.donePlaying();

}

The GameBarrier can be in one of three states:

• GAME_NOTREADY: There are fewer than 4 players waiting to play. When

the barrier is in this state, no player can progress beyond waitToPlay().

• GAME_FILLING: There are (or were) at least 4 players waiting to play,

and either we are in the first turn or else all four players from the prior turn

have departed (via donePlaying()). When the barrier is in this state, a

player can progress beyond waitToPlay(), and in fact four players must

progress beyond this function. When exactly four players have progressed

beyond this function, the barrier enters the GAME_FILLED state.

• GAME_FILLED: Four players have been sent to the console, and the turn is

not over (meaning that the departure of all four from the console via

donePlaying() has not yet taken place). When the barrier is in this

state, no waiting player can progress beyond waitToPlay().

CS 162 Fall 2013 Midterm Exam #1 October 21, 2013

NAME: _______________________________________

 Page 10/12

The ConsoleBarrier can be in one of two states:

• CONSOLE_WAIT: Four players have not yet arrived at the console in the

current round. When the barrier is in this state, no player can progress

beyond waitAtConsole().

• CONSOLE_ALLOW: Four players have arrived in the current round. When

the barrier is in this state, all four waiting players must progress beyond

waitAtConsole(), after which the state reverts to CONSOLE_WAIT.

Your barrier will require the use of condition variables. Recall that condition

variables provide three methods: Condition.wait(Lock mutex),

Condition.signal(), and Condition.broadcast().

Locks provide two methods: Lock.acquire() and Lock.release().

Note that part (but not all) of your work is to ensure that the barriers make the

correct state transitions.

Below, where indicated, fill out the variables and methods for the GameBarrier

and ConsoleBarrier objects.

public class GameBarrier {

private static final int GAME_NOTREADY = 0;

private static final int GAME_FILLING = 1;

private static final int GAME_FILLED = 2;

private Lock mutex;

private int state;

private Condition cv;

/* SPECIFY ANY OTHER CLASS VARIABLES */

public GameBarrier(Lock lock) {

this.mutex = lock;

this.state = GAME_NOTREADY;

this.cv = new Condition();

/* INITIALIZE ANY OTHER CLASS VARIABLES */

}

CS 162 Fall 2013 Midterm Exam #1 October 21, 2013

NAME: _______________________________________

 Page 11/12

public void waitToPlay() {

/* YOU MUST FILL IN THIS FUNCTION */

}

public void donePlaying() {

/* YOU MUST FILL IN THIS FUNCTION */

}

CS 162 Fall 2013 Midterm Exam #1 October 21, 2013

NAME: _______________________________________

 Page 12/12

}

public class ConsoleBarrier {

private static final int CONSOLE_WAIT = 0;

private static final int CONSOLE_ALLOW = 1;

private Lock mutex;

private int state;

private Condition cv;

/* SPECIFY ANY OTHER CLASS VARIABLES */

public ConsoleBarrier(Lock lock) {

this.mutex = lock;

this.state = CONSOLE_WAIT;

this.cv = new Condition();

/* INITIALIZE ANY OTHER CLASS VARIABLES */

}

public void waitAtConsole() {

/* YOU MUST FILL IN THIS FUNCTION */

}

