
CS 162 Fall 2012 Midterm Exam October 15, 2012

 Page 1/14

University of California, Berkeley

College of Engineering

Computer Science Division – EECS

Fall 2012 Ion Stoica

Midterm Exam
October 15, 2012

CS162 Operating Systems

Your Name:

SID AND 162 Login:

TA Name:

Discussion Section

Time:

General Information:
This is a closed book and one 2-sided handwritten note examination. You have 80 minutes to

answer as many questions as possible. The number in parentheses at the beginning of each

question indicates the number of points for that question. You should read all of the questions

before starting the exam, as some of the questions are substantially more time consuming.

Write all of your answers directly on this paper. Make your answers as concise as possible. If there

is something in a question that you believe is open to interpretation, then please ask us about it!

 Good Luck!!

QUESTION POINTS ASSIGNED POINTS OBTAINED

1 24

2 14

3 12

4 24

5 12

6 14

TOTAL 100

CS 162 Fall 2012 Midterm Exam October 15, 2012

 Page 2/14

1. (24 points total) True/False and Why? CIRCLE YOUR ANSWER. For each

question: 1 point for true/false correct, 2 point for explanation. An explanation cannot

exceed 2 sentences.

a) Each thread has its own stack.

TRUE FALSE

Why?

b) Starvation implies deadlock.

TRUE FALSE

Why?

c) It’s generally possible to substitute a semaphore for a condition variable, because

sem.V()/sem.P() have similar semantics to cond.signal()/cond.wait().

TRUE FALSE

Why?

d) Shortest Run Time First (SRTF) is the “optimal” scheduling algorithm, but it is

generally not implemented directly, due to excessive context switching overhead.

TRUE FALSE

Why?

CS 162 Fall 2012 Midterm Exam October 15, 2012

 Page 3/14

e) Using a smaller page size increases the size of the page table.

TRUE FALSE

Why?

f) Moving from a single level page table to a two-level page table will always

decrease the memory footprint (in aggregate) used by the page table.

TRUE FALSE

Why?

g) Unlike paging, segmentation doesn’t prevent processes from accessing physical

memory not allocated to them.

TRUE FALSE

Why?

h) If you increase the size of a the page cache from 8Kb to 16Kb, and you are

running a “Perfect LRU” page replacement strategy, the cache hit ratio will never

get worse.

TRUE FALSE

Why?

CS 162 Fall 2012 Midterm Exam October 15, 2012

 Page 4/14

2. (14 points) Memory hierarch: You are responsible for designing the memory system

for a byte addressable system. The virtual memory address space is 32 bits and the

physical memory address space is 16 bits.

a) (4 points) Assume the system uses a two level page table to translate a virtual

address to a physical address. Show the format of the virtual address, specify the

page size (pick one size if multiple sizes are feasible), and specify the length of

each field in the virtual address. Make sure that each translation table fits in a

page.

b) (4 points) Assume you add to your system a 4-way set-associative data cache

with 16 cache blocks. Each block in the cache holds 8 bytes of data. In order to

address a specific byte of data, you will have to split the address into the cache tag,

cache index and byte select. Which parts of the address would you associate with

each component, how long will each component be (in bits) and why? (Not:

Assume there are no modifiers bits in the table.)

Virtua	
 	

31	
 0	

Virtua	
 	

15	
 0	

CS 162 Fall 2012 Midterm Exam October 15, 2012

 Page 5/14

c) (3 points) The main memory access time is 100ns, and the cache lookup time is

50ns. Assuming a cache hit rate of 90%, what is the average time to read a

location from main memory? (Note: Assume the cache hit rate is the same for the

data and the page translation tables.)

d) (3 points) To speed up the address translation process we introduce a TLB that

has an access time of 20ns. Assuming the TLB hit rate is 95%, what is the average

access time for a memory operation?

CS 162 Fall 2012 Midterm Exam October 15, 2012

 Page 6/14

3. (12 points) Synchronization: A common parallel programming pattern is to perform

processing in a sequence of parallel stages: all threads work independently during each

stage, but they must synchronize at the end of each stage at a synchronization point called

a barrier. If a thread reaches the barrier before all other threads have arrived, it waits.

When all threads reach the barrier, they are notified and can begin the execution on the

next phase of the computation.

Example:
while (true) {

 Compute stuff;
 BARRIER();
 Read other threads results;
 }

a) (4 points) The following implementation of Barrier is incomplete and has two

lines missing. Fill in the missing lines so that the Barrier works according to the

prior specifications.

class Barrier() {

 int numWaiting = 0; // Initially, no one at barrier

 int numExpected = 0; // Initially, no one expected
 Lock L = new Lock();
 ConditionVar CV = new ConditionVar();

 void threadCreated() {
 L.acquire();
 numExpected++;
 L.release();
 }
 void enterBarrier() {
 L.acquire();
 numWaiting++;

 if (numExpected == numWaiting) { // If we are the last
 numWaiting = 0; // Reset barrier and wake threads

 // Fill me in

 } else { // Else, put me to sleep

 // Fill me in
 }
 L.release() ;
 }
}

CS 162 Fall 2012 Midterm Exam October 15, 2012

 Page 7/14

b) (5 points) Now, let us use Barrier in a parallel algorithm. Consider the linked

list below:

 Node 4 Node 3 Node 2 Node 1

In our parallel algorithm, there are four threads (Thread 1, Thread 2, Thread 3, Thread 4).

Each thread has its own instance variable node, and all threads share the class variable

barrier. Initially, Thread 1’s node references Node 1, Thread 2’s node references Node 2,

Thread 3’s node references Node 3, and Thread 4’s node references Node 4.

In the initialization steps, barrier.threadCreated() is called once for each thread

created, so we have barrier.numExpected == 4 as a starting condition.

Once all four threads are initialized, each thread calls its run() method. The run()

method is identical for all threads:

void run() {
 boolean should_print = true;
 while (true) {
 if (node.next != null) {
 node.updated_value = node.value +
 node.next.value;
 node.updated_next = node.next.next;
 } else if (should_print) {
 System.out.println(node.value);
 should_print = false;
 }
 barrier.enterBarrier();
 node.value = node.updated_value;
 node.next = node.updated_next;
 barrier.enterBarrier();
 }
}

List all the values that are printed to stdout along with the thread that prints each

value. For example, “thread 1 prints 777”.

CS 162 Fall 2012 Midterm Exam October 15, 2012

 Page 8/14

c) (3 points) In an attempt to speed-up the parallel algorithm from the previous part

(2c), you notice that the line barrier.enterBarrier() occurs twice in run()’s while

loop. Can one of these two calls to barrier.enterBarrier() be removed while

guaranteeing that the output of the previous part (2c) remains unchanged? If your

answer is “yes”, specify whether you would remove the first or second occurrence

of barrier.enterBarrier().

CS 162 Fall 2012 Midterm Exam October 15, 2012

 Page 9/14

4. (24 points total) CPU scheduling. Consider the following single-threaded processes,

arrival times, and CPU processing requirements:

Process ID (PID) Arrival Time Processing Time

1 0 6

2 2 4

3 3 5

4 6 2

a) (12 points): For each scheduling algorithm, fill in the table with the ID of the

process that is running on the CPU. Each row corresponds to a time unit.

● For time slice-based algorithms, assume one unit time slice.

● When a process arrives it is immediately eligible for scheduling, e.g.,

process 2 that arrives at time 2 can be scheduled during time unit 2.

● If a process is preempted, it is added at the tail of the ready queue.

Time FIFO RR SJF

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

CS 162 Fall 2012 Midterm Exam October 15, 2012

 Page 10/14

b) (6 points): Calculate the response times of individual processes for each of the

scheduling algorithms. The response time is defined as the time a process takes to

complete after it arrives.

 PID 1 PID 2 PID 3 PID 4

FIFO

RR

SJF

CS 162 Fall 2012 Midterm Exam October 15, 2012

 Page 11/14

c) (6 points) Consider same processes and arrival times, but assume now a processor

with two CPUs. Assume CPU 0 is busy for the first two time units. For each

scheduling algorithm, fill in the table with the ID of the process that is running on

each CPU.

• For any non-time slice-based algorithm, assume that once a process starts

running on a CPU, it keeps running on the same CPU till the end.

● If both CPUs are free, assume CPU 0 is allocated first.

Time CPU # FIFO RR SJF

0 0

 1

1 0

 1

2 0

 1

3 0

 1

4 0

 1

5 0

 1

6 0

 1

7 0

 1

8 0

 1

9 0

 1

10 0

 1

CS 162 Fall 2012 Midterm Exam October 15, 2012

 Page 12/14

5. (12 points) Deadlock: Consider the following resource allocation graph:

a) (3 points) Does the above allocation graph contain a deadlock? Explain your

answer using no more than two sentences.

b) (3 points) Assume now that P2 also demands resource R1. Does this allocation

graph contain a deadlock? Explain your answer using no more than two sentences.

c) (3 points) Assume the allocation graph at point b), and, in addition, assume that

R2 has now three instances. Does this allocation graph contain a deadlock?

Explain your answer using no more than two sentences.

d) (3 points) Add to the original allocation graph an additional process P4 that

demands an instance of R1. Does the allocation graph contain a deadlock?

Explain your answer using no more than two sentences.

CS 162 Fall 2012 Midterm Exam October 15, 2012

 Page 13/14

6. (14 points) Caching: Consider a memory consisting of four pages (frames), and consider

the following reference stream of virtual pages A, B, C, D, E, C, A, B, C, D, F.

a) (4 points) Consider the LRU page replacement algorithm. Fill in the following

table showing all page faults. What is the number of page faults?

Ref

Page

A B C D E C A B C D F

1

2

3

4

b) (4 points) Consider now the MIN page replacement algorithm. Assume the

reference stream continues with virtual pages A, C, B, F (i.e., the entire reference

stream is A, B, C, D, E, C, A, B, C, D, F, A, C, B, F). Fill in the following table

showing all page faults. How many page faults are there?

Ref

Page

A B C D E C A B C D F

1

2

3

4

CS 162 Fall 2012 Midterm Exam October 15, 2012

 Page 14/14

c) (3 points) Consider again the LRU replacement policy, and the original reference

stream. What is the minimum memory size (in pages) such that the number of

faults to be no larger than 6? Explain.

d) (3 points) Replace a single reference in the original reference stream (e.g., change

the third reference from C to A) such that to reduce the number of page faults by

two when using LRU. Show the resulting reference stream and the corresponding

fault in the following table:

Ref

Page

1

2

3

4

