
 Page 1/21

University of California, Berkeley

College of Engineering

Computer Science Division ⎯ EECS

Fall 2008

John Kubiatowicz

Midterm I
October 15

th
, 2008

CS162: Operating Systems and Systems Programming

Your Name:

SID Number:

Discussion

Section:

General Information:

This is a closed book exam. You are allowed 1 page of hand-written notes (both sides). You

have 3 hours to complete as much of the exam as possible. Make sure to read all of the questions

first, as some of the questions are substantially more time consuming.

Write all of your answers directly on this paper. Make your answers as concise as possible. On

programming questions, we will be looking for performance as well as correctness, so think through

your answers carefully. If there is something about the questions that you believe is open to

interpretation, please ask us about it!

Problem Possible Score

1 24

2 12

3 25

4 21

5 18

Total 100

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 2/21

[This page left for π]

3.141592653589793238462643383279502884197169399375105820974944

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 3/21

Problem 1: Short Answer [24pts]

Problem 1a[2pts]: Give at least two reasons why the following implementation of a condition

variable is incorrect (assume that MySemi is a semaphore initialized to 0):

 Wait() { MySemi.P(); }

 Signal() { MySemi.V(); }

Problem 1b[4pts]: What is the difference between Mesa and Hoare scheduling for monitors?

Include passing of locks between signaler and signalee, scheduling of CPU resources, and impact

on programmer.

Problem 1c[3pts]: The SRTF algorithm requires knowledge of the future. Why is that? Name two

ways to approximate the information required to implement this algorithm.

Problem 1d[3pt]: What is priority donation? What sort of information must the OS track to allow it

to perform priority donation?

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 4/21

Reader() {

 //First check self into system

 lock.acquire();

 while ((AW + WW) > 0) {

 WR++;

 okToRead.wait(&lock);

 WR--;

 }

 AR++;

 lock.release();

 // Perform actual read-only access

 AccessDatabase(ReadOnly);

 // Now, check out of system

 lock.acquire();

 AR--;

 if (AR == 0 && WW > 0)

 okToWrite.signal();

 lock.release();

}

Writer() {

 // First check self into system

 lock.acquire();

 while ((AW + AR) > 0) {

 WW++;

 okToWrite.wait(&lock);

 WW--;

 }

 AW++;

 lock.release();

 // Perform actual read/write access

 AccessDatabase(ReadWrite);

 // Now, check out of system

 lock.acquire();

 AW--;

 if (WW > 0){

 okToWrite.signal();

 } else if (WR > 0) {

 okToRead.broadcast();

 }

 lock.release();

}

Problem 1e[3pts]: Above, we show the Readers-Writers example given in class. It used two

condition variables, one for waiting readers and one for waiting writers. Suppose that all of the

following requests arrive in very short order (while R1 and R2 are still executing):

 Incoming stream: R1 R2 W1 W2 R3 R4 R5 W3 R6 W4 W5 R7 R8 W6 R9

In what order would the above code process the above requests? If you have a group of requests

that are equivalent (unordered), indicate this clearly by surrounding them with braces ‘{}’. You can

assume that the wait queues for condition variables are FIFO in nature (i.e. signal() wakes up the

oldest thread on the queue). Explain how you got your answer.

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 5/21

Problem 1f[4pts]:

Suppose that you were to redesign the code in (1e). What is the minimum number of condition

variables that we would we need in order to handle the above requests in an order that guarantees

that a read always returns the results of writes that have arrived before it but not after it? (Another

way to say this is that the reads and writes occur in the order in which they arrive, while still

allowing groups of reads that arrive together to occur simultaneously.) Provide a two or three

sentence sketch of your scheme (do not try to write code!).

Problem 1g[3pts]: What are exceptions? Name two different types of exceptions and give an

example of each type:

Problem 1h[2pts]: What was the problem with the Therac-25? Your answer should involve one of

the topics of the class.

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 6/21

Problem 2: TRUE/FALSE [12 pts]
In the following, it is important that you EXPLAIN your answer in TWO SENTENCES OR LESS
(Answers longer than this may not get credit!). Also, answers without an explanation GET NO

CREDIT.

Problem 2a[2pts]: The kernel on a multiprocessor can use the local disabling of interrupts (within

one CPU) to produce critical sections between the OSs on different CPUs.

 True / False

 Explain:

Problem 2b[2pts]: When designing a multithreaded application, you must use synchronization

primitives to make sure that the threads do not overwrite each other’s registers.

 True / False

 Explain:

Problem 2c[2pts]: A system that provides segmentation without paging can fragment the physical

address space, forcing the operating system to waste physical memory.

 True / False

 Explain:

Problem 2d[2pts]: A user-level library implements each system call by first executing a “transition

to kernel mode” instruction. The library routine then calls an appropriate subroutine in the kernel.

 True / False

 Explain:

Problem 2e[2pts]: The difference between processes and threads is purely historical.

 True / False

 Explain:

Problem 2f[2pts]: Round robin scheduling provides a latency improvement over FCFS scheduling

for interactive jobs.

 True / False

 Explain:

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 7/21

[This page intentionally left blank]

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 8/21

Problem 3: Atomic Synchronization Primitives [25 pts]

In class, we discussed a number of atomic hardware primitives that are available on modern

architectures. In particular, we discussed “test and set” (TSET), SWAP, and “compare and swap”

(CAS). They can be defined as follows (let “expr” be an expression, “&addr” be an address of a

memory location, and “M[addr]” be the actual memory location at address addr):

Test and Set (TSET) Atomic Swap (SWAP) Compare and Swap (CAS)

TSET(&addr) {

 int result = M[addr];

 M[addr] = 1;

 return (result);

}

SWAP(&addr, expr) {

 int result = M[addr];

 M[addr] = expr;

 return (result);

}

CAS(&addr, expr1, expr2) {

 if (M[addr] == expr1) {

 M[addr] = expr2;

 return true;

 } else {

 return false;

 }

}

Both TSET and SWAP return values (from memory), whereas CAS returns either true or false.

Note that our &addr notation is similar to a reference in c++, and means that the &addr argument

must be something that can be stored into (an “lvalue”). For instance, TSET could be used to

implement a spin-lock acquire as follows:

 int lock = 0; // lock is free

 // Later: acquire lock

 while (TSET(lock));

CAS is general enough as an atomic operation that it can be used to implement both TSET and

SWAP. For instance, consider the following implementation of TSET with CAS:

 TSET(&addr) {

 int temp;

 do {

 temp = M[addr];

 } while (!CAS(addr,temp,1));

 return temp;

 }

Problem 3a[3pts]:

Show how to implement a spinlock acquire with a single while loop using CAS instead of TSET.

You must only fill in the arguments to CAS below:

 // Initialization

 int lock = 0; // Lock is free

 // acquire lock

 while (!CAS(, ,));

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 9/21

Problem 3b[2pts]:

Show how SWAP can be implemented using CAS. Don’t forget the return value.

 SWAP(&addr, reg1) {

 }

Problem 3c[3pts]:
With spinlocks, threads spin in a loop (busy waiting) until the lock is freed. In class we argued that

spinlocks were a bad idea because they can waste a lot of processor cycles. The alternative is to put a

waiting process to sleep while it is waiting for the lock (using a blocking lock). Contrary to what we

implied in class, there are cases in which spinlocks would be more efficient than blocking locks. Give a

circumstance in which this is true and explain why a spinlock is more efficient.

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 10/21

An object such as a queue is considered “lock-free” if multiple processes can operate on this object

simultaneously without requiring the use of locks, busy-waiting, or sleeping. In this problem, we

are going to construct a lock-free FIFO queue using the atomic CAS operation. This queue needs

both an Enqueue and Dequeue method.

We are going to do this in a slightly different way than normally. Rather than Head and Tail

pointers, we are going to have “PrevHead” and Tail pointers. PrevHead will point at the last

object returned from the queue. Thus, we can find the head of the queue (for dequeuing). If we

don’t have to worry about simultaneous Enqueue or Dequeue operations, the code is

straightforward (ignore the null-pointer exception for the Dequeue() operation for now):

// Holding cell for an entry

class QueueEntry {

 QueueEntry next = null;

 Object stored;

 QueueEntry(Object newobject) {

 stored = newobject;

 }

}

// The actual Queue (not yet lock free!)

class Queue {

 QueueEntry prevHead = new QueueEntry(null);

 QueueEntry tail = prevHead;

 void Enqueue(Object newobject) {

 QueueEntry newEntry = new QueueEntry(newobject);

 QueneEntry oldtail = tail;

 tail = newEntry;

 oldtail.next = newEntry;

 }

 Object Dequeue() {

 QueueEntry oldprevHead = prevHead;

 QueueEntry nextEntry = oldprevHead.next;

 prevHead = nextEntry;

 return nextEntry.stored;

 }

}

Problem 3d[3pts]:

For this non-multithreaded code, draw the state of a queue with 2 queued items on it:

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 11/21

Problem 3e[3pts]:

For each of the following potential context switch points, state whether or not a context switch at that point

could cause incorrect behavior of Enqueue(); Explain!

 void Enqueue(Object newobject) {

1 QueueEntry newEntry = new QueueEntry(newobject);

2 QueueEntry oldtail = tail;

3 tail = newEntry;

 oldtail.next = newEntry;

 }

Point 1:

Point 2:

Point 3:

Problem 3f[4pts]:

Rewrite code for Enqueue(), using the CAS() operation, such that it will work for any number of

simultaneous Enqueue and Dequeue operations. You should never need to busy wait. Do not use locking

(i.e. don’t use a test-and-set lock). The solution is tricky but can be done in a few lines. We will be grading

on conciseness. Do not use more than one CAS() or more than 10 lines total (including the function

declaration at the beginning). Hint: wrap a do-while around vulnerable parts of the code identified above.

 void Enqueue(Object newobject) {

 QueueEntry newEntry = new QueueEntry(newobject);

 // Insert code here

 }

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 12/21

Problem 3g[3pts]:

For each of the following potential context switch points, state whether or not a context switch at that point

could cause incorrect behavior of Dequeue(); Explain!

 Object Dequeue() {

1 QueueEntry oldprevHead = prevHead;

2 QueueEntry nextEntry = oldprevHead.next;

3 prevHead = nextEntry;

 return nextEntry.stored;

 }

Point 1:

Point 2:

Point 3:

Problem 3h[4pts]:

Rewrite code for Dequeue(), using the CAS() operation, such that it will work for any number of

simultaneous Enqueue and Dequeue operations. You should never need to busy wait. Do not use locking

(i.e. don’t use a test-and-set lock). The solution can be done in a few lines. We will be grading on

conciseness. Do not use more than one CAS() or more than 10 lines total (including the function declaration

at the beginning). Hint: wrap a do-while around vulnerable parts of the code identified above.

 Object Dequeue() {

 // Insert code here

 }

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 13/21

 Problem 4: Deadlock[21 pts]
Problem 4a[5pts]:

The figure at the right illustrates a 2D mesh of network routers.

Each router is connected to each of its neighbors by two

network links (small arrows), one in each direction. Messages

are routed from a source router to a destination router and can

stretch through the network (i.e. consume links along the route

from source to destination). Messages can cross inside routers.

Assume that no network link can service more than one

message at a time, and that each message must consume a

continuous set of channels (like a snake). Messages always

make progress to the destination and never wrap back on

themselves. The figure shows two messages (thick arrows).

Assume that each router or link has a very small amount of buffer space and that each message

can be arbitrarily long. Show a situation (with a drawing) in which messages are deadlocked and

can make no further progress. Explain how each of the four conditions of deadlock are satisfied by

your example. Hint: Links are the limited resources in this example.

Problem 4b[3pts]:

Define a routing policy that avoids deadlocks in the network of (4a). Name one of the four

conditions that is no longer possible, given your routing policy. Explain.

Problem 4c[3pts]:

Suppose that each router node contains sufficient queue space to hold complete messages (assume

infinite space, if you like). Why is it impossible for deadlocks such as in (4a) to occur? Name one

of the four conditions that is no longer possible, given infinite queue space in the router. Explain.

R R R R

R R R R

R R R R

R R R R

R R R R

R R R R

R R R R

R R R R

R R R RR R R R R RR R

R R R RR R R RR R R R R RR R

R R R RR R R RR R R R R RR R

R R R RR R R RR R R R R RR R

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 14/21

Problem 4d[4pts]:

Suppose that we have the following resources: A, B, C and threads T1, T2, T3, T4. The total

number of each resource is:

Further, assume that the processes have the following maximum requirements and current

allocations:

Current Allocation Maximum Thread

ID A B C A B C

T1 2 1 3 4 9 4

T2 1 2 3 5 3 3

T3 5 4 3 6 4 3

T4 2 1 2 4 8 2

Is the system in a safe state? If “yes”, show a non-blocking sequence of thread executions.

Otherwise, provide a proof that the system is unsafe. Show all steps, intermediate matrices, etc.

Total

A B C

12 9 12

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 15/21

Problem 4e[3pts]:

Assume that we start with a system in the state of (4d). Suppose that T1 asks for 2 more copies of

resource A. Can the system grant this if it wants to avoid deadlock? Explain.

Problem 4f[3pts]:

Assume that we start with a system in the state of (4d). What is the maximum number of additional

copies of resources (A, B, and C) that T1 can be granted in a single request without risking

deadlock? Explain.

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 16/21

[This page intentionally left blank]

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 17/21

Problem 5: Address Translation [18 pts]
Problem 5a[3pts]:

Suppose we have a 32-bit processor (with 32-bit virtual addresses) and 8 KB pages. Assume that it

can address up to 2 TB (terabytes) of DRAM; 1TB = 1024 GB = (1024)
2
 MB. Assume that we need

4 permissions bits in each page table entry (PTE), namely Valid (V), Writable (W), Accessed (A),

and Dirty (D). Show the format of a PTE, assuming that each page should be able to hold an integer

number of PTEs. If you have extra bits in the PTE, you can mark them as “unused”. Explain.

Problem 5b[5pts]:

Assume that we wish to build a two-level page table for the processor from (5a) in which each piece

of the page table consumes exactly a page (no more, no less). We may end up wasting space as a

result. Draw and label a figure showing how a virtual address gets mapped into a physical address.

Show the format of the page table (complete with access checks), the virtual address, and physical

address. Minimize pieces of the page table that consume less than a page (and thus waste space).

.

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 18/21

Problem 5c[3pts]:

Consider a multi-level memory management scheme using the following format for virtual

addresses:

Virtual seg #

(2 bits)

Virtual Page #

(6 bits)

Offset

(12 bits)

Virtual addresses are translated into physical addresses of the following form:

Physical Page #

(8 bits)

Offset

(12 bits)

Page table entries (PTE) are 16 bits in the following format, stored in big-endian form in memory

(i.e. the MSB is first byte in memory):

Physical Page #

(8 bits)
K

ern
el

N
o
cach

e

0

0

D
irty

U
se

W
riteab

le

V
alid

1) How big is a page? Explain.

2) What is the maximum amount of virtual memory supported by this scheme? Explain

3) What is the maximum amount of physical memory supported by this scheme? Explain

Problem 5d[7pts]: Assume the memory translation scheme from (5c). Use the Segment Table and

Physical Memory table given on the next page to predict what will happen with the following

load/store instructions. Addresses are virtual. The return value for a load is an 8-bit data value or an

error, while the return value for a store is either “ok” or an error. If there is an error, make sure to

say which error. Possibilities are: “bad segment” (invalid segment), “segment overflow” (address

outside range of segment), or “access violation” (page invalid, or attempt to write a read only

page). A few answers are given:

Instruction Result Instruction Result

Load [0xC1015] 0x57 Store [0x52002]

Store [0x43045] ok Load [0x04013]

Store [0xC1016] Access violation Store [0x81015]

Load [0xD2002] Store [0x03010]

Store [0xD2031] Load [0x13035]

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 19/21

 Segment Table (Max Segment=3)

Seg #

Page Table

Base

Max Page

Entries

Segment

State

0 0x02030 0x20 Valid

1 0x01020 0x10 Valid

2 0x01040 0x40 Invalid

3 0x04000 0x20 Valid

Physical Memory

Address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F

0x00000 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D

0x00010 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D

….

0x01010 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

0x01020 40 03 41 01 30 01 31 03 00 03 00 00 00 00 00 00

0x01030 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF

0x01040 10 01 11 03 31 03 13 00 14 01 15 03 16 01 17 00

….

0x02030 10 01 11 00 12 03 67 03 11 03 00 00 00 00 00 00

0x02040 02 20 03 30 04 40 05 50 01 60 03 70 08 80 09 90

0x02050 10 00 31 01 10 03 31 01 12 03 30 00 10 00 10 01

….

0x04000 30 00 31 01 11 01 33 03 34 01 35 00 43 38 32 79

0x04010 50 28 84 19 71 69 39 93 75 10 58 20 97 49 44 59

0x04020 23 03 20 03 00 01 62 08 99 86 28 03 48 25 34 21

….

0x10000 AA 55 AA 55 AA 55 AA 55 AA 55 AA 55 AA 55 AA 55

0x10010 A5 5A A5 5A A5 5A A5 5A A5 5A A5 5A A5 5A A5 5A

….

0x11000 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF

0x11010 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF 00

0x11020 22 33 44 55 66 77 88 99 AA BB CC DD EE FF 00 11

….

0x31000 01 12 23 34 45 56 67 78 89 9A AB BC CD DE EF 00

0x31010 02 13 24 35 46 57 68 79 8A 9B AC BD CE DF F0 01

0x31020 03 01 25 36 47 58 69 7A 8B 9C AD BE CF E0 F1 02

0x31030 04 15 26 37 48 59 70 7B 8C 9D AE BF D0 E1 F2 03

….

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 20/21

 [This page intentionally left blank]

CS 162 Fall 2008 Midterm Exam I October 15, 2008

 Page 21/21

[This page left for scratch]

