
Discussion 0: Tools, x86, C

CS 162

August 27, 2021

Contents
1 Vocabulary 2

2 Make 3
2.1 More details about Make . 3

3 Git 4
3.1 Helpful Resources . 4
3.2 Some Commands to Know . 4

4 GDB: The GNU Debugger 6
4.1 Some Commands to Know . 6
4.2 Helpful Resources . 6

5 Debugging Example 7

6 x86 Assembly 10
6.1 Registers . 10
6.2 Syntax . 10
6.3 Practice: Clearing a Register . 11
6.4 Calling Convention . 11
6.5 Instructions Supporting the Calling Convention . 11
6.6 Practice: Reading Disassembly . 12
6.7 Practice: x86 Calling Convention . 13

7 C Programs 15
7.1 Calling a Function in Another File . 15
7.2 Including a Header File . 15
7.3 Using #define . 16
7.4 Using #include Guards . 17

1

CS 162 Fall 2021 Discussion 0: Tools, x86, C

1 Vocabulary
With credit to the Anderson & Dahlin textbook (A&D):

• stack - The stack is the memory set aside as scratch space for a thread of execution. When a
function is called, a block is reserved on the top of the stack for local variables and some bookkeeping
data. When that function returns, the block becomes unused and can be used the next time a
function is called. The stack is always reserved in a LIFO (last in first out) order; the most recently
reserved block is always the next block to be freed.

• heap - The heap is memory set aside for dynamic allocation. Unlike the stack, there is no enforced
pattern to the allocation and deallocation of blocks from the heap; you can allocate a block at any
time and free it at any time.

• process - A process is an instance of a computer program that is being executed, typically with
restricted rights. It consists of an address space and one or more threads of control. It is the main
abstraction for protection provided by the operating system kernel.

• address space - The address space for a process is the set of memory addresses that it can use
and the state associated with them. The memory corresponding to each process’ address space is
private and cannot be accessed by other processes, unless it is explicitly shared.

• C - A high-level programming language. In order to run it, C will be compiled to low level machine
instructions like x86_64 or RISC-V. Note that it is often times easier to express high level ideas
in C, but C cannot be used to express many details (such as register allocation).

• x86 - A very popular family of instruction sets (which includes i386 and x86_64). Unlike MIPS
or RISC-V, x86 is primarily based on CISC (Complex Instruction Set Computing) architecture.
Virtually all servers, desktops, and most laptops (with Intel or AMD) natively execute x86.

2

CS 162 Fall 2021 Discussion 0: Tools, x86, C

Tools are important for every programmer. If you spend time learning to use your tools, you will
save even more time when you are writing and debugging code. This section will introduce the most
important tools for this course.

2 Make
GNU Make is program that is commonly used to build other programs. When you run make, GNU Make
looks in your current directory for a file named Makefile and executes the commands inside, according
to the makefile language.

my-first-makefile-rule:
echo "Hello world"

The building block of GNU Make is a rule. We just created a rule, whose target is my-first-
makefile-rule and recipe is echo "Hello world". When we run my-first-makefile-rule, GNU
Make will execute the steps in the recipe and print “Hello world”.

Rules can also contain a list of dependencies, which are other targets that must be executed before
the rule. In this example, the task-two rule has a single dependency: task-one. If we run “make
task-two”, then GNU Make will run task-one and then ask-two.

task-one:
echo 1

task-two: task_one
echo 2

2.1 More details about Make
• If you just run make with no specified target, then GNU Make will build the first target.

• By convention, target names are also file names. If a rule’s file exists and the file is newer than
all of its dependencies, then GNU Make will skip the recipe. If a rule’s file does not exist, then the
timestamp of the target would be “the beginning of time”. Otherwise, the timestamp of the target
is the Modification Time of the corresponding file.

• When you run “make clean”, the “clean” recipe is executed every time, because a corresponding
file named “clean” is never actually created. (You can also use the .PHONY feature of the makefile
language to make this more robust.)

• Makefile recipes must be indented with tabs, not spaces.

• You can run recipes in parallel with “make -j 4” (specify the number of parallel tasks).

• GNU Make creates automatic rules if you don’t specify them. For example, if you create a file
named my_program.c, GNU Make will know how to compile it if you run “make my_program”.

• There are many features of the makefile language. Special variables like $@ and $< are commonly
used in Makefiles. Look up the documentation online for more!

Pintos, the educational operating system that you will use for projects, has a complex build system
written with Makefiles. Understanding GNU Make will help you navigate the Pintos build system.

3

CS 162 Fall 2021 Discussion 0: Tools, x86, C

3 Git
Git is a distributed revision control and source code management (SCM) system with an emphasis on
speed, data integrity, and support for distributed, non-linear workflows. GitHub is a Git repository
hosting service, which offers all of the distributed revision control and SCM functionality of Git as well
as adding many useful and unique features.

In this course, we will use Git and GitHub to manage all of our source code. It’s important that you
learn Git, but NOT just by reading about it.

3.1 Helpful Resources
• Git Documentation1

• GitHub Git Cheat Sheet2

• Atlassian Git Cheat Sheet3 (especially the section Git Basics)

3.2 Some Commands to Know
• git init

Create a repository in the current directory

• git clone <url>
Clone a repository from <url> into a new directory

• git status
Show the working tree status

• git pull <repo> <branch>
Fetch from branch <branch> of repository <repo> and integrate with current branch of repository
checked out

• git push <repo> <branch>
Pushes changes from local branch <branch> to remote repository <repo>

• git add <file(s)>
Add file contents to the index

• git commit -m <commit message>
Record changes to the repository with the provided commit message

• git branch
List or delete branches

• git checkout
Checkout a branch or path to the working tree

• git merge
Join two or more development histories together

• git rebase
Reapply commits on top of another base commit

1https://git-scm.com/doc
2https://training.github.com/downloads/github-git-cheat-sheet/
3https://www.atlassian.com/git/tutorials/atlassian-git-cheatsheet

4

https://git-scm.com/doc
https://training.github.com/downloads/github-git-cheat-sheet/
https://www.atlassian.com/git/tutorials/atlassian-git-cheatsheet

CS 162 Fall 2021 Discussion 0: Tools, x86, C

• git diff [--staged]
Show a line-by-line comparison between the current directory and the index (or between the index
and HEAD, if you specify --staged).

• git show [--format=raw] <tree-ish>
Show the details of anything (a commit, a branch, a tag).

• git reset [--hard] <tree-ish>
Reset the current state of the repository

• git log
Show commits on the current branch

• git reflog
Show recent changes to the local repository

5

CS 162 Fall 2021 Discussion 0: Tools, x86, C

4 GDB: The GNU Debugger
GDB is a debugger that supports C, C++, and other languages. You will not be able to debug your
projects effectively without advanced knowledge of GDB, so make sure to familiarize yourself with GDB
as soon as possible.

4.1 Some Commands to Know
• run, r: start program execution from the beginning of the program. Also allows argument passing

and basic I/O redirection.

• quit, q: exit GDB

• kill: stop program execution.

• break, break x if condition: suspend program at specified function (e.g. “break strcpy”) or
line number (e.g. “break file.c:80”).

• clear: the “clear” command will remove the current breakpoint.

• step, s: if the current line of code contains a function call, GDB will step into the body of the
called function. Otherwise, GDB will execute the current line of code and stop at the next line.

• next, n: Execute the current line of code and stop at the next line.

• continue, c: continue execution (until the next breakpoint).

• finish: Continue to end of the current function.

• print, p: print value stored in variable.

• call: execute arbitrary code and print the result.

• watch; rwatch; awatch: suspend program when condition is met. i.e. x > 5.

• backtrace, bt, bt full: show stack trace of the current state of the program.

• disassemble: show an assembly language representation of the current function.

• set follow-fork-mode <mode> (Mac OS does not support this):
GDB can only debug 1 process at a time. When a process forks itself (creates a clone of itself),
follow either the parent (original) or the child (clone). <mode> can be either parent or child.

The print and call commands can be used to execute arbitrary lines of code while your program
is running! You can assign values or call functions. For example, “call close(0)” or “print i = 4”.
(You can actually use print and call interchangeably most of the time.) This is one of the most powerful
features of gdb.

4.2 Helpful Resources
• GDB Cheat Sheet4

4https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

6

https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

CS 162 Fall 2021 Discussion 0: Tools, x86, C

5 Debugging Example
Take a moment to read through the code for asuna.c. It takes in 0 or 1 arguments. If an argument is
provided, asuna uses quicksort to sort all the chars in the argument. If no argument is provided, then
asuna uses a default string to sort.

void swap(char* a, int i, int j) {
int t = a[i];
a[i] = a[j];
a[j] = t;

}

int partition(char* a, int l, int r){
int pivot = a[l];
int i = l, j = r+1;

while (1){
do

++i;
while (a[i] <= pivot && i <= r);

do
--j;

while (a[j] > pivot);

if (i >= j)
break;

swap(a, i, j);
}

swap(a, l, j);

return j;
}

void sort(char* a, int l, int r){
if (l < r){

int j = partition(a, l, r);
sort(a, l, j-1);
sort(a, j+1, r);

}
}

int main(int argc , char** argv){
char* a = NULL;

if (argc > 1)
a = argv [1];

else
a = "Asuna is the best char!";

printf("Unsorted: \"%s\"\n", a);
sort(a, 0, strlen(a) - 1);
printf("Sorted : \"%s\"\n", a);

}

When asuna is run, we get the following output:

> ./asuna "Kirito is the best char!"
Unsorted: "Kirito is the best char!"
Sorted : " !Kabceehhiiiorrssttt"

> ./asuna
Unsorted: "Asuna is the best char!"
Segmentation fault (core dumped)

Use the debugging tools to find why asuna.c crashes when no arguments are provided. Assume there
are no compile issues (i.e. syntax is correct and necessary inclue statements are provided).

First, to compile asuna.c, run

> gcc -g asuna.c -o asuna

The -g flag produces debugging information for GDB.
The first step in debugging a segfault is often times seeing which line it occurred in. You might

immediately see which line the problem occurs by running the program in gdb with run. To get a

7

CS 162 Fall 2021 Discussion 0: Tools, x86, C

more holistic view, you can also get the backtrace of the error with gdb using the backtrace command
immediately after using run.

> gdb ./asuna
(gdb) run
Starting program: /home/vagrant/code/section/sec0/asuna
Unsorted: "Asuna is the best char!"

Program received signal SIGSEGV, Segmentation fault.
0x00005555555546cb in swap (a=0x555555554914 "Asuna is the best char!", i=1,

j=22) at asuna.c:6
6 a[i] = a[j];
(gdb) backtrace
#0 0x00005555555546cb in swap (a=0x555555554914 "Asuna is the best char!",

i=1, j=22) at asuna.c:6
#1 0x0000555555554775 in partition (

a=0x555555554914 "Asuna is the best char!", l=0, r=22) at asuna.c:26
#2 0x00005555555547bf in sort (a=0x555555554914 "Asuna is the best char!",

l=0, r=22) at asuna.c:36
#3 0x0000555555554863 in main (argc=1, argv=0x7fffffffe418) at asuna.c:51

Notice that the backtrace points to an error in the partition function, specifically the line a[i] =
a[j]. We can inspect this bug closer now that we know where its located by using gdb. We can either
set the breakpoint to be on partition or the actual faulting line.

(gdb) kill
Kill the program being debugged? (y or n) y
(gdb) break asuna.c:6
Breakpoint 1 at 0x5555555546ae: file asuna.c, line 6.
(gdb) run
Starting program: /home/vagrant/code/section/sec0/asuna
Unsorted: "Asuna is the best char!"

Breakpoint 1, swap (a=0x555555554914 "Asuna is the best char!", i=1, j=22)
at asuna.c:6

6 a[i] = a[j];
(gdb) next

Program received signal SIGSEGV, Segmentation fault.
0x00005555555546cb in swap (a=0x555555554914 "Asuna is the best char!", i=1, j=22)

at asuna.c:6
6 a[i] = a[j];

At this point, notice that

1. This line performs 2 operations: a read from a[j] and a write to a[i].

2. Earlier in the program we already execute a a[j] in partition.

3. If we run asuna with the default argument ("Asuna is the best char!") passed in as a user
argument, no segfault occurs.

The fact that #1 and #2 are simultaneously true points to a problem with the write to a[i], which
is most likely a memory issue. #3 implies that memory is somehow different when using a default

8

CS 162 Fall 2021 Discussion 0: Tools, x86, C

argument vs an user provided argument. In gdb, we can print the address of the string a when using
the default argument compared to an user provided argument.

(gdb) print a
$1 = 0x555555554914 "Asuna is the best char!"
(gdb) run "Kirito is the best char!"
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /home/vagrant/code/section/sec0/asuna "Kirito is the best char!"
Unsorted: "Kirito is the best char!"

Breakpoint 1, swap (a=0x7fffffffe686 "Kirito is the best char!", i=1, j=23)
at asuna.c:6

6 a[i] = a[j];
(gdb) print a
$2 = 0x7fffffffe686 "Kirito is the best char!"

Notice how the address of the default argument is so much lower than that of the user provided
argument. This is because the default argument is in the static region of the program. The segfault
occurs because memory in the static region cannot be modified. When a string is declared as part of the
program such as in main:6, that string is compiled into the code and stored in static memory5.

Our solution is to use strdup6 in main, which allocates a char array on the heap for the string and
copies the string provided in the argument or the default one if none is provided.

void main(int argc , char** argv){
const char* noarg = "Asuna is the best char!";
char* a = NULL;

if (argc > 1)
a = strdup(argv [1]);

else
a = strdup(noarg);

printf("Unsorted: \"%s\"\n", a);
sort(a, 0, strlen(a) - 1);
printf("Sorted : \"%s\"\n", a);

free(a);
}

The free on the last line isn’t strictly necessary since this is a small program, and all memory is freed
upon termination. However, it’s still good practice to free for every malloc which happens implicitly
in strdup.

5https://stackoverflow.com/questions/1011455/is-it-possible-to-modify-a-string-of-char-in-c
6https://man7.org/linux/man-pages/man3/strdup.3.html

9

https://stackoverflow.com/questions/1011455/is-it-possible-to-modify-a-string-of-char-in-c
https://man7.org/linux/man-pages/man3/strdup.3.html

CS 162 Fall 2021 Discussion 0: Tools, x86, C

6 x86 Assembly
In the projects for this class, you will write an operating system for a 32-bit x86 machine. The class
VM (and probably your laptop) use a 64-bit x86 processor (i.e., an x86-64 processor) that is capable of
executing 32-bit x86 instructions. There are significant differences between the 64-bit and 32-bit versions
of x86. For this worksheet, we will focus on the 32-bit x86 ISA because that is the ISA you will have
to read when working on the projects. Remember that if you compile programs on your local machine
or directly in the class VM (not in Pintos), the result will be in x86-64 assembly.

6.1 Registers
The 32-bit x86 ISA has 8 main registers: eax, ebx, ecx, edx, esi, edi, esp, and ebp. You can omit the
“e” to reference the bottom half of each register. For example, ax refers to the bottom half of eax. esp
is the stack pointer and ebp is the base pointer. Additionally, eip is the instruction pointer, similar to
the program counter in MIPS or RISC-V.

x86 also has segment registers (cs, ds, es, fs, gs, and ss) and control registers (e.g., cr0). You can
think of segment registers as offsets when accessing memory in certain ways (e.g., cs is for instruction
fetches, ss is for stack memory), and control registers as configuring what features of the processor are
enabled (e.g., protected mode, floating point unit, cache, paging). We won’t focus on them in this
worksheet, but you should know that they exist. In particular, Pintos sets these up carefully
upon startup in pintos/src/threads/start.S, so look there if you are interested. Keep in mind that
there are special restrictions as to how these registers are used as operands to instructions.

6.2 Syntax
Although the x86 ISA specifies the registers and instructions, there are two different syntaxes for writ-
ing them out: Intel and AT&T. Instruction operands are written in a different order in each syntax,
which can make it confusing to read one syntax if you are used to the other. For this worksheet, we
will focus on the AT&T syntax because it is the version used by the toolchain we are using (gcc, as).

In the AT&T syntax:

• Registers are preceded by a percent sign (e.g., %eax for the register eax)
• Immediates are preceded by a dollar sign (e.g., $4 for the constant 4)
• For many (but not all!) instructions, use parentheses to dereference memory addresses (e.g., (%eax)

reads from the memory address in eax)
• You can add a constant offset by prefixing the parentheses (e.g., 8(%eax) reads from the memory

address eax+ 8)
• Source operands typically precede destination operands, for instructions with two operands.

Instructions are often suffixed by a letter to specify the size of operands. Use the suffix b to work with
8-bit bytes. Use the suffix w to work with 16-bit words. Use the suffix l to work with 32-bit longwords
(or doublewords). (Analogously, on the x86-64 ISA, append q to work with 64-bit quadwords). If you
omit the suffix, the assembler will add it for you.

Some examples:

• addw %ax, %bx: Add the word in ax to the word in bx, and store the result in bx.
• addl %eax, %ebx: Add the longword in eax to the longword in ebx, and store the result in ebx.
• addl (%eax), %ebx: Add the longword in memory at the address in eax to the longword in ebx,

and store the result in ebx.
• addl 12(%eax), %ebx: Add the longword in memory at the address eax+ 12 to the longword in
ebx, and store the result in ebx.

• subl $12, %esp: Subtract the constant 12 from the longword in esp, and store the result in esp.

10

CS 162 Fall 2021 Discussion 0: Tools, x86, C

Notice that you don’t need special instructions to load from/store to memory. Some other useful
instructions are and, or, and xor. An especially common instruction is mov:

• movl %eax, %ebx: Copy the longword in eax into ebx.
• movl $4, %ecx: Set the longword in ecx to 4.
• movl 4, %ecx: Read the longword in memory at address 4 and store the result in ecx.
• movl %edx, -8(%ecx): Write the longword in edx to memory at the address ecx− 8.

For the instructions lea and leal, which you will find in Pintos, the parenthesis notation for memory
works differently. They calculate an absolute memory address given a register and offset.

• leal 8(%eax), %ebx: Sets ebx to eax + 8. You can think of this as setting ebx to the memory
address that movl 8(%eax), %ebx would read from.

6.3 Practice: Clearing a Register
Write an instruction that clears register eax (i.e., stores zero in eax).

There are various possibilities:

xorl %eax, %eax
subl %eax, %eax
movl $0, %eax

6.4 Calling Convention
The caller does the following:

1. Push the arguments onto the stack, in reverse order. After this step, the top of the stack must be
16-byte aligned — add padding before pushing arguments, if necessary, so that this is true.

2. Push the return address and jump to the function you are trying to call.
3. When the callee returns, the return address is gone but the arguments are still on the stack.

The callee does the following, and must preserve ebx, esi, edi, and ebp:

1. (Typical, but not required) Push ebp onto the stack, and store current esp into ebp.
2. Compute the return value and store it in eax.
3. Restore esp to its value at the time the callee began executing.
4. Pop the return address off of the stack and jump to it.

6.5 Instructions Supporting the Calling Convention
• pushl %eax is equivalent to:

subl $4, %esp
movl %eax, (%esp)

• popl %eax is equivalent to:

movl (%esp), %eax
addl $4, %esp

• call $0x1234: push the return address (address of the next instruction of the caller) onto the
stack and jump to the specified address (address of the callee).

11

CS 162 Fall 2021 Discussion 0: Tools, x86, C

• leave is equivalent to:

movl %ebp, %esp
popl %ebp

• ret pops a longword off of the stack (typically a return address) and jumps to it.

pushal pushes eax, ecx, edx, ebx, esp, ebp, esi, and edi to the stack, and popal pops values off of
the stack and stores them in those registers. They are useful to switch context or handle interrupts.

6.6 Practice: Reading Disassembly
file.c:

int global = 0;

int callee(int x, int y) {
int local = x + y;
return local + 1;

}

void caller(void) {
global = callee(3, 4);

}

When gcc compiles this file, with optimizations off, it outputs:
file.s:

callee:
pushl %ebp
movl %esp, %ebp
subl $16, %esp
movl 8(%ebp), %edx
movl 12(%ebp), %eax
addl %edx, %eax
movl %eax, -4(%ebp)
movl -4(%ebp), %eax
addl $1, %eax
leave
ret

caller:
pushl %ebp
movl %esp, %ebp
pushl $4
pushl $3
call callee
addl $8, %esp
movl %eax, global
nop
leave

12

CS 162 Fall 2021 Discussion 0: Tools, x86, C

ret

What does each instruction do? Mark the prologue(s), epilogue(s), and call sequence(s).

• First three instructions of callee are the prologue: save esp and allocate space for locals.

• The next two movl instructions read the function arguments off of the stack into registers.

• The addl instruction computes x + y.

• The next movl instruction stores the result at ebp− 4, the stack memory allocated for the local
variable.

• The next movl reads the value of local into a register, and the following addl instruction adds
one to it. Now the return value is in eax.

• The final two instructions are the epilogue: restore esp, pop the return address off the stack, and
jump to it.

• The first two lines of caller are the prologue: save esp.

• The next four lines are the call sequence for calling callee: set up stack, call function, and clean
up stack.

• The next movl instruction stores the return value into the address of the global variable.

• The nop appears to be an artifact of gcc—we’re compiling with optimizations off, so the compiler
doesn’t optimize this out (although it would on any other optimization level)

• The last two instructions are the the epilogue: restore esp, pop the return address of the stack
and jump to it.

6.7 Practice: x86 Calling Convention
Sketch the stack frame of helper before it returns.

void helper(char* str, int len) {
char word[len];
strncpy(word, str, len);
printf("%s", word);
return;

}

int main(int argc, char *argv[]) {
char* str = "Hello World!";
helper(str, 13);

}

13
str
return address
saved EBP
\0
!
d
l

13

CS 162 Fall 2021 Discussion 0: Tools, x86, C

...
l
e
H

14

CS 162 Fall 2021 Discussion 0: Tools, x86, C

7 C Programs

7.1 Calling a Function in Another File
Consider a C program consisting of two files:
my_app.c:

#include <stdio.h>

int main(int argc, char** argv) {
char* result = my_helper_function(argv[0]);
printf("%s\n", result);
return 0;

}

my_lib.c:

char* my_helper_function(char* string) {
int i;
for (i = 0; string[i] != ’\0’; i++) {

if (string[i] == ’/’) {
return &string[i + 1];

}
}
return string;

}

You build the program with gcc my_app.c my_lib.c -o my_app.

1. What is the bug in the above program? (Hint: it’s in my_app.c.)

my_helper_function is not declared in my_app.c, so the compiler (incorrectly) guesses that its
return type is int. Because sizeof(int) = 4 but sizeof(char*) = 8 in the Student VM, this
results in a segfault.

2. How can we fix the bug?

Declare my_helper_function with the proper signature above main.

7.2 Including a Header File
Suppose we add a header file to the above program and revise my_app.c to #include it.
my_app.c:

#include <stdio.h>
#include "my_lib.h"

int main(int argc, char** argv) {
char* result = my_helper_function(argv[0]);
printf("%s\n", result);
return 0;

}

15

CS 162 Fall 2021 Discussion 0: Tools, x86, C

my_lib.h:

char* my_helper_function(char* string);

You build the program with gcc my_app.c my_lib.c -o my_app.

1. Suppose that we made a mistake in my_lib.h, and declared the function as char*
my_helper_function(void);. Additionally, the author of my_app.c sees the header file and in-
vokes the function as my_helper_function(). Would the program still compile? What would
happen when the function is called?
The program would compile but the compiler would not pass an argument to the callee even though
it is expecting one, causing it to read some value on the stack (%ebp offset by 8).

2. What could the author of my_lib.c do to make such a mistake less likely?
Also #include "my_lib.h" at the top of my_lib.c.

7.3 Using #define

Suppose we add a struct and #ifdef to the header file:
my_app.c:

#include <stdio.h>
#include "my_lib.h"

int main(int argc, char** argv) {
helper_args_t helper_args;
helper_args.string = argv[0];
helper_args.target = ’/’;

char* result = my_helper_function(&helper_args);
printf("%s\n", result);
return 0;

}

my_lib.h:

typedef struct helper_args {
#ifdef ABC

char* aux;
#endif

char* string;
char target;

} helper_args_t;

char* my_helper_function(helper_args_t* args);

my_lib.c:

#include "my_lib.h"

char* my_helper_function(helper_args_t* args) {
int i;
for (i = 0; args->string[i] != ’\0’; i++) {

if (args->string[i] == args->target) {

16

CS 162 Fall 2021 Discussion 0: Tools, x86, C

return &args->string[i + 1];
}

}
return args->string;

}

You build the program with:

> gcc -c my_app.c -o my_app.o
> gcc -c my_lib.c -o my_lib.o
> gcc my_app.o my_lib.o -o my_app

Convince yourself that this program outputs the same thing as the one in 7.2.

1. What is the size of the helper_args_t struct?
16 bytes

2. Suppose we add the line #define ABC at the top of my_lib.h. Now what is the size of the
helper_args_t structure?
24 bytes

3. Suppose we leave my_lib.h unchanged (no #define ABC). But, suppose we instead use the follow-
ing commands to build the program:

> gcc -DABC -c my_app.c -o my_app.o
> gcc -c my_lib.c -o my_lib.o
> gcc my_app.o my_lib.o -o my_app

The program will now either segfault or print something incorrect. What went wrong?
The code in my_app.c sees a different definition of helper_args_t than my_lib.c, causing them
to write/read string at different offsets from the pointer to the args structure.

7.4 Using #include Guards
Suppose we split my_lib.h into two files:
my_helper_function.h

#include "my_helper_args.h"

char* my_helper_function(helper_args_t* args);

my_helper_args.h

typedef struct helper_args {
char* string;
char target;

} helper_args_t;

1. What happens if we include the following two lines at the top of my_app.c?

#include "my_helper_function.h"
#include "my_helper_args.h"

Compiler encouters an error because helper_args_t is defined twice.

2. How can we fix this? (Hint: look up #include guards.)
Use an #include guard. my_helper_function.h:

17

CS 162 Fall 2021 Discussion 0: Tools, x86, C

#ifndef MY_HELPER_FUNCTION_H_
#define MY_HELPER_FUNCTION_H_

#include "my_helper_args.h"

char* my_helper_function(helper_args_t* args);

#endif

Similar for my_helper_args.h.

18

	Vocabulary
	Make
	More details about Make

	Git
	Helpful Resources
	Some Commands to Know

	GDB: The GNU Debugger
	Some Commands to Know
	Helpful Resources

	Debugging Example
	x86 Assembly
	Registers
	Syntax
	Practice: Clearing a Register
	Calling Convention
	Instructions Supporting the Calling Convention
	Practice: Reading Disassembly
	Practice: x86 Calling Convention

	C Programs
	Calling a Function in Another File
	Including a Header File
	Using #define
	Using #include Guards

