Discussion 7: 1/O

Apr 4, 2025

Contents

1 I/0
1.1 Concept Check e
1.2 Hard Drive Performance

CS 162 Spring 2025 Discussion 7 I/0

1 1/0

I/0 devices can be categorized based on how they access data, also known as access patterns. Character
devices (e.g. keyboard, printer) access data as a character stream, meaning data is not addressable. On
the other hand, block devices (e.g. disk) access data in fixed-sized blocks. Data is addressable (i.e. able
to seek). Network devices (e.g. ethernet, wireless, Bluetooth) have a separate interface for networking
purposes (e.g. socket interfaces like select).

I/0 devices can also be categorized based on the access timing. Synchronous or blocking interfaces wait
until an I/0 request is fulfilled. On the other hand, non-blocking interfaces return quickly from a request
without waiting. Asynchronous interfaces allow other processing to continue while waiting for the request
to complete. For instance, when requesting data, the request will return immediately with a pointer to a
buffer. This buffer will be filled asynchronously. When the request is completed, the process will be notified
with a signal It’s important to note that while synchronous and blocking are synonymous, non-blocking and
asynchronous are two distinct types of non-synchronous I/0.

To provide an easy to use abstraction for I/O, device drivers connect the high-level abstractions imple-
mented by the OS and hardware specific details for I/O devices. They support a standard interface allowing
the kernel to use hardware without knowing the specific implementation. Device drivers are split into two
halves. The top half is used by the kernel to start I/O operations, while the bottom half services interrupts
produced by the device. It’s important to note that in Linux, the terms are flipped.

User
Program

Kernel I/O
Subsystem

Device Driver
Top Half

Device Driver
Bottom Half

Device
Hardware

Device Access

Processors talk to I/O devices through device controllers, which contain a set of registers that can be
read from and written to. When using programmed I/0 (PIO), the processor is involved in every byte
transfer. This can be done using port-mapped I/O (PMIO) which uses special memory instructions
(e.g. in/out in x86). The memory address space is distinct from the physical memory address space. This
is useful on older/smaller devices with limited physical address space, but it complicates CPU logic with
special instructions. Alternatively, memory-mapped I/0 (MMIO) maps control registers and displays
memory into the physical address space. It uses standard memory instructions (load, store). As a result,
it will use up a portion of the physical memory address space. However, this simplifies CPU logic by putting
the responsibility on the device controller.

On the other hand, direct memory access (DMA) allows the I/O device to directly write to main memory
without CPU intervention. It uses memory addresses within the physical memory region contrary to MMIO
which just shares the same physical address space.

When an I/O operation is completed, the OS needs to be notified regarding its success. Polling puts this
responsibility on the OS, requiring the OS to repeatedly check a memory-mapped status register. This
provides a low-cost method since it would effectively be a memory access. However, it’s not a very efficient
use of CPU cycles, especially for infrequent or unpredictable I/O. On the other hand, the I/O device could
generate an interrupt. This is much more expensive due to context switching overhead, but it’s easier to
handle infrequent or unpredictable requests.

CS 162 Spring 2025 Discussion 7 I/0

Storage Devices
Magnetic Disks

Magnetic disks use magnetization to read and write data. Each magnetic disk is comprised of multiple
platters, single thin round plates that store information. Each platter spins on a spindle, where each
platter has two surfaces. Data is read and written with the head. Each head attaches to an arm, and each
arm attaches to the arm assembly. Data is stored in fixed size units called sectors, which are the minimum
units of transfer. A circle of sectors makes up a track. Due to the geometry of a disk, the track length varies
from the inside to the outside of the disk.
Spmdle — "__ i
! Head Arm 1;:/\]
Surface _/_i,. f—' - ! Seqror T
Platter—-i | .I
Surface —b A I

\\ r—l— Tra;k/

- Arm Assembly

4

As seen in the picture above, magnetic disks have lots of moving parts, which can lead to many physical
issues. Compared to flash memory in the next section, the read/write times are a lot slower. However, they
are much cheaper compared to flash memory, offering a better data size to price ratio.

Flash Memory

Flash memory uses electrical circuits (e.g. NOR, NAND) for persistent storage. While NOR flash allows
individual words to be read/written, we will focus on NAND flash which reads/writes in fixed size units called
pages (typically 2 KB to 4 KB). Flash memory involves much fewer moving parts compared to magnetic
disks, leading to more durability. Its read and write speeds are also much faster. However, writing to a cell
requires erasing it first (i.e. can’t override the value). Erasing can only be done in large units called erasure
blocks (typically 128 KB to 512 KB). Furthermore, each page has a finite lifetime, meaning it can only be
erased and rewritten a fixed number of times (e.g. 10K).

To address the concern of erasure blocks, flash memory typically uses a flash translation layer (FTL)
maps logical flash pages to different physical pages on the device. This allows the device to relocate data
without the OS knowing or having to worry about it. As a result, writing over an existing page would
involve writing to a new location, updating the mapping in the FTL, and then erasing the old page in the
background. To ensure all physical pages are used roughly equally, the FTL uses wear leveling.

Performance

It’s important to minimize how long it takes to access data from a storage device. The time required to
retrieve data typically involves queuing time, controller time, and access time. Queuing time refers
to how long a data request spends in the OS queue before actually getting fulfilled. Controller time refers
to how long the device controller spends processing the request. Access time refers to how long it takes to

CS 162 Spring 2025 Discussion 7 I/0

access data from the device. When discussing performance between different devices, the access time is what
will generally be focused on.

For magnetic disks, the access time involves the seek time, rotation time, and transfer time. Seeking
moves the arm over to the desired track. Then, we need to wait for the target sector to rotate under the head.
Finally, the disk must transfer data to/from the buffer for read/write. When maximizing disk performance,
the key is to minimize seek and rotation times since transfer times are fixed for a given disk.

To improve disk performance, disks employ several intelligence techniques. Track skewing staggers logical
sectors of the same number on each track by the time it takes to move across one track. Sector sparing
remaps bad sectors to spare sectors on the same surface. Disk manufacturers typically include spare sectors
distributed across each surface for this. To preserve sequential behavior, disks may use slip sparing which
remaps all sectors when there is a bad sector. Disks often include a few MB of buffer memory which is
used by the disk controller to buffer data for reads and writes. As a result, track buffering can improve
performance by storing sectors that have been read by the disk head but not requested by the OS, taking
advantage of physical spatial locality.

1.1 Concept Check

1. If a particular I/O device implements a blocking interface, do you need multiple threads to have
concurrent operations which use that device?

2. For 1/0 devices which receive new data very frequently, is it more efficient to interrupt the CPU than
to have the CPU poll the device?

3. When using SSDs, which between reading or writing data is complex and slow?

4. Why might you choose to use DMA instead of MMIO? Give a specific example where one is more
appropriate than the other.

5. Usually, the OS deals with bad or corrupted sectors. However, some disk controllers magically hide
failing sectors and re-map to back-up locations on disk when a sector fails.

(a) If you had to choose where to lay out these “back-up” sectors on disk - where would you put
them? Why?

CS 162 Spring 2025 Discussion 7

1/0

(b) How do you think that the disk controller can check whether a sector has gone bad?

,

L

(c) Can you think of any drawbacks of hiding errors like this from the OS?

[

6. When writing data to disk, how can the buffer memory be used to increase the perceived write speed
from the OS viewpoint?

1.2 Hard Drive Performance

Assume we have a hard drive with the following specifications.
e An average seek time of 8 ms
A rotational speed of 7200 revolutions per minute (RPM)
o A controller that can transfer data at a maximum rate of 50 MiB/s

We will ignore the effects of queuing delay for this problem.

1. What is the expected throughput of the hard drive when reading 4 KiB sectors from a random location
on disk?

CS 162 Spring 2025 Discussion 7 I/0

2. What is the expected throughput of the hard drive when reading 4 KiB sectors from the same track on
disk (i.e. the read/write head is already positioned over the correct track when the operation starts)?

3. What is the expected throughput of the hard drive when reading the very next 4 KiB sector (i.e. the
read/write head is immediately over the proper track and sector at the start of the operation)?

	I/O
	Concept Check
	Hard Drive Performance

