
Discussion 3.5: Condition Variables, Futex, RW Locks

February 20, 2026

Contents
1 Condition Variable 2

1.1 Condition Check . 3
1.2 Office Hours Queue . 4

2 Futex 8
2.1 Barrier . 9

3 Pintoast 11
3.1 Chef Implementation . 12
3.2 Customer Implementation . 13

1

CS 162 Spring 2026 Discussion 3.5 Condition Variables, Futex, RW Locks

1 Condition Variable
Condition variables are synchronization variables that let a thread efficiently wait for a change to a shared
state. They store a queue of threads such that the waiting threads are allowed to sleep inside the critical
section which is in contrast to other synchronization variables like semaphores.

Condition variables are used in conjunction with a lock which together form a monitor.

Condition variables provide the following operations. For all these methods, the thread calling them must
be holding the lock.

Wait
Atomically releases lock and suspends execution of calling thread.

Signal
Wake up the next waiting thread in the queue.

Broadcast
Wake up all waiting threads in the queue.

Infinite Synchronized Buffer
Consider an infinite synchronized buffer problem of vending machines where there’s a producer and consumer.
”Infinite” refers to the fact that the machine has no limit on how much coke it can hold.

Lock bufferLock;
ConditionVar bufferCV;

Producer() {
bufferLock.acquire();
put 1 coke in machine
bufferCV.signal();
bufferLock.release();

}

Consumer() {
bufferLock.acquire();
while (machine is empty)
bufferCV.wait(bufferLock);

take 1 coke out
bufferLock.release();

}

By using condition variables, we can avoid busy waiting inside a critical section.

Semantics
Different semantics define signal and wait differently.

When a thread is signaled using Hoare semantics, the ownership of the lock is immediately transferred
to the waiting thread. Furthermore, the execution of this thread resumes immediately. After this thread
releases the lock, ownership of the lock is transferred back to the signaling thread. As a result, signaling in
Hoare semantics can be thought of as an atomic operation.

On the other hand, Mesa semantics makes no guarantees about the execution order when a thread is
signaled.

This leads to a subtle but important difference in the code. Using the same bounded buffer example as
before,

2

CS 162 Spring 2026 Discussion 3.5 Condition Variables, Futex, RW Locks

Hoare

if (machine is empty)
bufferCV.wait(bufferLock);

take 1 coke out

Mesa

while (machine is empty)
bufferCV.wait(bufferLock);

take 1 coke out

We can use a if statement for Hoare semantics because we’re guaranteed an execution order between the
waiting and signaling thread. However, that is not the case for Mesa semantics, meaning between the time
the waiting thread is signalled and it actually executes, some other thread could have run in between and
rendered the condition false again, so a while loop is necessary.

1.1 Condition Check
1. Will this program compile/run?

1 pthread_mutex_t lock;
2 pthread_cond_t cv;
3 int hello = 0;
4 void print_hello() {
5 hello += 1;
6 printf("First line (hello=%d)\n", hello);
7 pthread_cond_signal(&cv);
8 pthread_exit(0);
9 }

10

11 void main() {
12 pthread_t thread;
13 pthread_create(&thread, NULL, (void *) &print_hello, NULL);
14 while (hello < 1)
15 pthread_cond_wait(&cv, &lock);
16 printf("Second line (hello=%d)\n", hello);
17 }

cv_hello.c

2. Fill in the blanks such that the program always prints “Yeet Haw”. Assume the system behaves with
Mesa semantics.

1 int ben = 0;
2 _______________________;
3 _______________________;
4

5 void *helper(void *arg) {
6 _______________________;
7 ben += 1;
8 _______________________;
9 _______________________;

10 pthread_exit(NULL);
11 }
12

13 void main() {
14 pthread_t thread;
15 pthread_create(&thread, NULL, &helper, NULL);

3

CS 162 Spring 2026 Discussion 3.5 Condition Variables, Futex, RW Locks

16 pthread_yield();
17 _______________________;
18 _______________________;
19 _______________________;
20 if (ben == 1)
21 printf("Yeet Haw\n");
22 else
23 printf("Yee Howdy\n");
24 _______________________;
25 }

cv_howdy.c

1.2 Office Hours Queue
Suppose we want to use condition variables to control access to a CS162 (digital) office hours room for three
types of people: students, TAs, and professors. A person can attempt to enter the room (or will wait outside
until their condition is met), and after entering the room they can then exit the room. The follow are each
type’s conditions:

• Suppose professors get easily distracted and so they need solitude, with no other students, TAs, or
professors in the room, in order to enter the room.

• TAs don’t care about students being inside and will wait if there is a professor inside, but there can
only be up to 9 TAs inside (any more would clearly be imposters from CS161 or CS186).

• Students don’t care about other students or TAs being in the room, but will wait if there is a professor.

• Students and TAs are polite to professors, and will let a waiting professor in first.

4

CS 162 Spring 2026 Discussion 3.5 Condition Variables, Futex, RW Locks

To summarize the constraints,

• Professor must wait if anyone else is in the room

• TA must wait if there are already 9 TAs in the room

• TA must wait if there is a professor in the room or waiting outside

• Students must wait if there is a professor in the room or waiting outside
1 typedef struct room {
2 pthread_mutex_t lock;
3 pthread_cond_t student_cv;
4 int waiting_students, active_students;
5 pthread_cond_t ta_cv, prof_cv;
6 int waiting_tas, active_tas;
7 int waiting_profs, active_profs;
8 } room_t;
9

10 enter_room(room_t* room, int mode) {
11 pthread_mutex_lock(&room->lock);
12 if (mode == 0) {
13 _______________________;
14 _______________________;
15 _______________________;
16 _______________________;
17 _______________________;
18 room->active_students++;
19 } else if (mode == 1) {
20 _______________________;
21 _______________________;
22 _______________________;
23 _______________________;
24 _______________________;
25 room->active_tas++;
26 } else {
27 _______________________;
28 _______________________;
29 _______________________;
30 _______________________;
31 _______________________;
32 room->active_profs++;
33 }
34 pthread_mutex_unlock(&room->lock);
35 }
36

37 exit_room(room_t* room, int mode) {
38 pthread_mutex_lock(&room->lock);
39 if (mode == 0) {
40 room->active_students--;
41 _______________________;
42 _______________________;
43 _______________________;
44 } else if (mode == 1) {
45 room->active_tas--;
46 _______________________;
47 _______________________;
48 _______________________;
49 _______________________;
50 _______________________;
51 } else {

5

CS 162 Spring 2026 Discussion 3.5 Condition Variables, Futex, RW Locks

52 room->active_profs--;
53 _______________________;
54 _______________________;
55 _______________________;
56 _______________________;
57 _______________________;
58 _______________________;
59 _______________________;
60 _______________________;
61 _______________________;
62 }
63 pthread_mutex_unlock(&room->lock);
64 }

oh.c

1. Fill in enter_room.

2. Fill in exit_room.

6

CS 162 Spring 2026 Discussion 3.5 Condition Variables, Futex, RW Locks

7

CS 162 Spring 2026 Discussion 3.5 Condition Variables, Futex, RW Locks

2 Futex
Normally, a user program cannot put a thread to sleep without entering the kernel. However, kernel-based
locks like pthread_mutex_lock are slow when there is no contention, since they require a syscall every time.
A futex (fast userspace mutex) solves this by keeping the fast path entirely in user space, and only entering
the kernel when a thread actually needs to sleep or wake another thread.

futex(int *addr, int operation, int val)

addr
Pointer to an integer in user space (the futex word).

FUTEX_WAIT
Atomically checks if *addr == val. If so, puts the calling thread to sleep. If not, returns immediately.

FUTEX_WAKE
Wakes up to val threads currently sleeping on addr.

The general pattern when using a FUTEX_WAIT is

while (*addr != SOMETHING)
futex(addr, FUTEX_WAIT, SOMETHING);

The key insight is that FUTEX_WAIT checks the value atomically with putting the thread to sleep. This avoids
a race condition where the value changes between the check and the sleep.

Futex Lock
We can build a lock using a futex and atomic operations. The lock is represented by a single integer with
three states:

typedef enum { UNLOCKED, LOCKED, CONTESTED } Lock;
Lock mylock = UNLOCKED;

UNLOCKED
The lock is free.

LOCKED
The lock is held, and no other thread is waiting.

CONTESTED
The lock is held, and at least one other thread is waiting.

The CONTESTED state is an optimization: it tells the releasing thread that it needs to call futex(FUTEX_WAKE)
to wake a waiter. If the lock is merely LOCKED, the releasing thread can avoid the syscall entirely.

1 acquire(Lock *thelock) {
2 if (compare&swap(thelock, UNLOCKED, LOCKED)) // If unlocked, grab lock!
3 return;
4

5 while (swap(thelock, CONTESTED) != UNLOCKED) // Keep trying to grab lock, sleep in futex
6 futex(thelock, FUTEX_WAIT, CONTESTED); // Sleep unless someone releases here!
7 }
8

9 release(Lock *thelock) {
10 if (swap(thelock, UNLOCKED) == CONTESTED) // If someone sleeping,
11 futex(thelock, FUTEX_WAKE, 1); // wake someone else up
12 }

futex_lock.c

8

CS 162 Spring 2026 Discussion 3.5 Condition Variables, Futex, RW Locks

2.1 Barrier
A common synchronization primitive used is a barrier. A barrier will block all threads from passing it until
every thread has gotten to the location. Think about a barrier placed before F1 drivers to ensure they all
reach the starting line before the race begins.

We want to implement a barrier which does not busy wait and is able to be used multiple times.

A barrier can be described by the following pseudo code:

structure Barrier {
count // number of threads that must arrive
waiting // counter of how many threads have arrived

}

procedure barrier_init(B, num_threads):
B.count = num_threads
B.waiting = 0

procedure barrier_wait(B):
B.waiting += 1
if B.waiting == B.count: // last thread arrives
B.waiting = 0 // reset for next use
wake_waiting_threads() // wake all other threads

else:
wait_for_all_threads() // wait until everyone gets here

For reference, here is the C code for compare and swap

bool CAS(int *mem, int cmp, int swp) {
if (*mem == cmp) {
*mem = swp;
return true;

} else {
return false;

}
}

Here is some C starter code to get you started on implementing barrier.

struct barrier {
int threads;
int waiting;
bool direction;

}

void barrier_init(struct barrier *b, int threads) {
b->threads = threads;
b->waiting = 0;
b->direction = 0;

}

Implement the method barrier_wait on the next page!

9

CS 162 Spring 2026 Discussion 3.5 Condition Variables, Futex, RW Locks

void barrier_wait(struct barrier *b) {
int wanted_dir = _______[A]_______;
int w;

do {
w = _______[B]_______;

} while (_______[C]_______)

if (_______[D]_______) {
b->waiting = 0;
b->direction = wanted_dir;
futex(_______[E]_______);

} else {
while (_______[F]_______)
futex(_______[G]_______);

}
}

Fill in the blanks in the barrier_wait method above to complete the implementation.
[A]

[B]

[C]

[D]

[E]

[F]

[G]

10

CS 162 Spring 2026 Discussion 3.5 Condition Variables, Futex, RW Locks

3 Pintoast
Diana is the owner of Pintoast Bakery. There are multiple chefs that bake customers’ orders one at a time.
A customer will first enter the bakery and place their order. After a chef bakes their order, the customer
will pay and leave the bakery, allowing another customer to come in.

1. Chefs should bake orders in a first-come first-serve manner.

2. Chefs should not block other cooks or customers while baking an order.

3. A bakery can only hold up to 100 customers at any given time.

typedef struct bakery {
int capacity;
struct list orders;
struct condition customerWait;
struct condition customerDone;
struct condition chefDone;
struct lock orders_lock;

} bakery_t;

typedef struct order {
bool cooked;
struct list_elem elem;
/* Other fields hidden */

} order_t;

/* Assume bake, enter, and leave always execute successfully. */

void bake(order_t* order) { /* Implementation details hidden */ };
void enter(bakery_t* bakery) { /* Implementation details hidden */ };
void leave(bakery_t* bakery) { /* Implementation details hidden */ };

Implement the following program to help Diana set up her Pintoast bakery in Pintos.

/* Assume that all members of bakery are properly initialized. Assume that a chef will
continuously call this function while the bakery is open. */

void chef(bakery_t* bakery) {
_______[A]_______;

while (_______[B]_______)
cond_wait(&bakery->customerWait, &bakery->orders_lock);

struct list_elem* e = _______[C]_______;
order_t* order = list_entry(e, order_t, elem);
_______[D]________;

bake(order);

_______[E]x4________;
}

The notation _____[Y]xN______ indicates a response that can be at most N lines long
and should be written in the answer box for Part Y.

11

CS 162 Spring 2026 Discussion 3.5 Condition Variables, Futex, RW Locks

3.1 Chef Implementation
[A] (max 1 line)

[B] (max 1 line)

[C] (max 1 line)

[D] (max 1 line)

[E] (max 4 lines)

12

CS 162 Spring 2026 Discussion 3.5 Condition Variables, Futex, RW Locks

3.2 Customer Implementation
/* Assume that bakery->capacity = 100 before any customer enters the bakery.
If there are already 100 customers in the bakery, a new customer should wait
for someone to leave before entering the bakery. */

void customer(bakery_t* bakery, order_t* order) {
_______[A]_______
while (_______[B]_______)

_______[C]_______

_______[D]_______
enter(bakery);

list_push_back(&bakery->orders, &order->elem);
_______[E]_______

while (_______[F]_______)
_______[G]_______

leave(bakery);
_______[H]x3_______

}

[A] (max 1 line)

[B] (max 1 line)

[C] (max 1 line)

[D] (max 1 line)

[E] (max 1 line)

[F] (max 1 line)

[G] (max 1 line)

13

CS 162 Spring 2026 Discussion 3.5 Condition Variables, Futex, RW Locks

[H] (max 3 lines)

14

	Condition Variable
	Condition Check
	Office Hours Queue

	Futex
	Barrier

	Pintoast
	Chef Implementation
	Customer Implementation

